Bismuth Vacancies Induced Lattice Strain in BiVO 4 Photoanodes Boosting Charge Separation For Water Oxidation

Photoelectrochemical (PEC) water splitting is a promising technology for green hydrogen production. However, severe charge recombination in the photoelectrode materials is one of the key obstacles to achieving high performance. Herein, a BiVO₄ photoanode with lattice strain (Str‐BVO) is constructed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2024-10
Hauptverfasser: Liu, Boyan, Wang, Xin, Zhang, Yingjuan, Wan, Kang, Xu, Liangcheng, Ma, Siqing, Zhao, Ruoting, Wang, Songcan, Huang, Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoelectrochemical (PEC) water splitting is a promising technology for green hydrogen production. However, severe charge recombination in the photoelectrode materials is one of the key obstacles to achieving high performance. Herein, a BiVO₄ photoanode with lattice strain (Str‐BVO) is constructed by generating Bi vacancies to promote charge separation in the bulk. The optimized Str‐BVO photoanode achieves a photocurrent density of 6.20 mA cm⁻ 2 at 1.23 V versus the reversible hydrogen electrode under AM 1.5 G illumination, with an impressive charge separation efficiency close to 100%. Systematical experiments and density functional theory reveal that the surface Bi vacancies induced strain causes the distortion of a small number of VO 4 tetrahedra, which increases the antibonding state energy of most normal VO 4 tetrahedra and creates more electronic vacancy states, thereby significantly promoting electron–hole separation. By surface loading with a FeNiO x co‐catalyst, the photoanode exhibits excellent PEC water‐splitting performance and stability.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.202403835