Regulating the Water Dissociation on Atomic Iron Sites to Speed Up CO 2 Protonation and Achieve pH‐Universal CO 2 Electroreduction
Atomic Fe sites enabled electrochemical carbon dioxide (CO 2 ) reduction (ECO 2 R) to carbon monoxide (CO) at low overpotentials. However, the narrow potential ranges for selective CO 2 conversion on atomic Fe sites hindered the CO production at high current densities. Therefore, unveiling the CO 2...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2024-10, Vol.14 (40) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atomic Fe sites enabled electrochemical carbon dioxide (CO
2
) reduction (ECO
2
R) to carbon monoxide (CO) at low overpotentials. However, the narrow potential ranges for selective CO
2
conversion on atomic Fe sites hindered the CO production at high current densities. Therefore, unveiling the CO
2
electroreduction processes and clarifying the catalytic mechanisms on different atomic Fe sites are important for better design of atomic Fe catalysts toward efficient ECO
2
R. Herein, the ECO
2
R processes on single‐atom, dual‐atom, and cluster Fe sites are systematically investigated, and clarify that the balanced water dissociation and CO
2
protonation on dual‐atom Fe sites promote the efficient CO production. The dual‐atom Fe catalyst achieves Faradaic efficiencies of CO (
FE
CO
) above 92% over a wide potential range of −0.4–−0.9 V versus reversible hydrogen electrode and maintains
FE
CO
of 91% after 153‐h electrolysis in H‐type cell. Benefitting from the favorable CO
2
protonation for ECO
2
R on dual‐atom Fe sites, pH‐universal CO
2
electroreduction is achieved in alkali‐/acid‐/bicarbonate‐fed membrane electrode assembly electrolyzer, with
FE
CO
exceeds 98% in strongly acidic/alkaline and neutral mediums. The work reveals a water dissociation‐promoted CO
2
electroreduction on dual‐atom Fe sites and presents a feasible regulation of atomic Fe sites for highly active/selective ECO
2
R. |
---|---|
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.202401364 |