Vertically Oriented MoS 2 with Spatially Controlled Geometry on Nitrogenous Graphene Sheets for High‐Performance Sodium‐Ion Batteries

Inspired by the great success of graphite in lithium‐ion batteries, anode materials that undergo an intercalation mechanism are considered to provide stable and reversible electrochemical sodium‐ion storage for sodium‐ion battery (SIB) applications. Though MoS 2 is a promising 2D material for SIBs,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-07, Vol.8 (19)
Hauptverfasser: Li, Ping, Jeong, Jong Yeob, Jin, Bingjun, Zhang, Kan, Park, Jong Hyeok
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inspired by the great success of graphite in lithium‐ion batteries, anode materials that undergo an intercalation mechanism are considered to provide stable and reversible electrochemical sodium‐ion storage for sodium‐ion battery (SIB) applications. Though MoS 2 is a promising 2D material for SIBs, it suffers from deformation of its layered structure during repeated intercalation of Na + , resulting in undesirable electrochemical behaviors. In this study, vertically oriented MoS 2 on nitrogenous reduced graphene oxide sheets (VO‐MoS 2 /N‐RGO) is presented with designed spatial geometries, including sheet density and height, which can deliver a remarkably high reversible capacity of 255 mA h g −1 at a current density of 0.2 A g −1 and 245 mA h g −1 at a current density of 1 A g −1 , with a total fluctuation of 5.35% over 1300 cycles. These results are superior to those obtained with well‐developed hard carbon structures. Furthermore, a SIB full cell composed of the optimized VO‐MoS 2 /N‐RGO anode and a Na 2 V 3 (PO 4 ) 3 cathode reaches a specific capacity of 262 mA h g −1 (based on the anode mass) during 50 cycles, with an operated voltage range of 2.4 V, demonstrating the potentially rewarding SIB performance, which is useful for further battery development.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.201703300