Palladium Nanoparticles Immobilized on Nano-Silica Triazine Dendritic Polymer (Pdnp-nSTDP): An Efficient and Reusable Catalyst for Suzuki-Miyaura Cross-Coupling and Heck Reactions

A new catalyst based on palladium nanoparticles immobilized on nano‐silica triazine dendritic polymer (Pdnp‐nSTDP) was synthesized and characterized by FT‐IR spectroscopy, thermogravimetric analysis, field emission scanning electron microscopy, energy dispersive X‐ray, transmission electron microsco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced synthesis & catalysis 2013-03, Vol.355 (5), p.957-972
Hauptverfasser: Isfahani, Amir Landarani, Mohammadpoor-Baltork, Iraj, Mirkhani, Valiollah, Khosropour, Ahmad R., Moghadam, Majid, Tangestaninejad, Shahram, Kia, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new catalyst based on palladium nanoparticles immobilized on nano‐silica triazine dendritic polymer (Pdnp‐nSTDP) was synthesized and characterized by FT‐IR spectroscopy, thermogravimetric analysis, field emission scanning electron microscopy, energy dispersive X‐ray, transmission electron microscopy and elemental analysis. The size of the palladium nanoparticles was determined to be 3.1±0.5 nm. This catalytic system showed high activity in the Suzuki–Miyaura cross‐coupling of aryl iodides, bromides and chlorides with arylboronic acids and also in the Heck reaction of these aryl halides with styrenes. These reactions were best performed in a dimethylformamide (DMF)/water mixture (1:3) in the presence of only 0.006 mol% and 0.01 mol% of the catalyst, respectively, under conventional conditions and microwave irradiation to afford the desired coupling products in high yields. The Pdnp‐nSTDP was also used as an efficient catalyst for the preparation of a series of star‐ and banana‐shaped compounds with a benzene, pyridine, pyrimidine or 1,3,5‐triazine unit as the central core. Moreover, the catalyst could be recovered easily and reused several times without any considerable loss of its catalytic activity.
ISSN:1615-4150
1615-4169
DOI:10.1002/adsc.201200707