Enhancement‐Mode Phototransistors Based on β‐Ga 2 O 3 Microflakes Fabricated by Focused Ion Beams

This study introduces focused ion beam (FIB) processing for the first time to etch and thin β‐Ga 2 O 3 microflakes, while exploring the effect of their thicknesses on the phototransistor performance. It is found that when the β‐Ga 2 O 3 microflakes reach a certain thickness, the phototransistors swi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2024-03, Vol.12 (9)
Hauptverfasser: Yang, Huarong, Cheng, Tong‐Huai, Ouyang, Huijia, Xin, Qian, Liu, Yiyuan, Meng, Miao, Yu Feng, Hua, Luo, Feng, Mu, Wenxiang, Jia, Zhitai, Tao, Xutang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study introduces focused ion beam (FIB) processing for the first time to etch and thin β‐Ga 2 O 3 microflakes, while exploring the effect of their thicknesses on the phototransistor performance. It is found that when the β‐Ga 2 O 3 microflakes reach a certain thickness, the phototransistors switch from the depletion mode to the enhancement mode, exhibiting extremely low dark current without a gate voltage. The enhancement‐mode phototransistor prepared using this method demonstrates a photo‐dark current ratio as high as 2.3 × 10 5 , a responsivity of 6.3 × 10 4  A W −1 , and an external quantum efficiency of 3.1 × 10 7 % when irradiated with incident light at a wavelength of 254 nm and a power density of 8 µW cm −2 . Additionally, the device has a rise time of 43 ms and a fall time of 28 ms, respectively. By using FIB processing to etch and thin β‐Ga 2 O 3 microflakes, this study effectively overcomes the poor controllability and low repeatability associated with the traditional mechanical exfoliation method, as well as the residual impurities from the plasma etching method. This opens up a new avenue for fabricating the high‐performance, low‐dimensional phototransistors based on β‐Ga 2 O 3 with high repeatability and controllability.
ISSN:2195-1071
2195-1071
DOI:10.1002/adom.202302213