A Flexible Silver‐Hollow‐Fiber Film by Blow‐Spinning and UV‐Induced Microstructural Engineering for High‐Efficiency Electromagnetic Interference Shielding
As the prevalence of electromagnetic interference (EMI) continues to rise, there is a growing demand for shielding materials, which play a crucial role in electronic devices, communication systems, health protection, etc. However, conventional EMI shielding materials encounter difficulties in effect...
Gespeichert in:
Veröffentlicht in: | Advanced materials technologies 2024-01, Vol.9 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the prevalence of electromagnetic interference (EMI) continues to rise, there is a growing demand for shielding materials, which play a crucial role in electronic devices, communication systems, health protection, etc. However, conventional EMI shielding materials encounter difficulties in effectively addressing the escalating intricacies of electromagnetic environments and diverse shielding scenarios, wherein foldability, flexibility, and lightweight are desired. In this work, a novel EMI shielding material, silver‐hollow‐fiber (AgHF), is developed by combining blow‐spinning, UV radiation, and temperature‐controlled annealing technologies. During the fabrication process, UV radiation is used to selectively reduce silver ions on the outer surface of precursor fiber, and temperature‐controlled annealing is further employed to remove the inside polymer, forming a hollow fiber structure. The AgHF exhibits superior flexibility, lightweight, remarkable mechanical stability, and excellent EMI shielding efficiency (SE). Particular, the AgHF with a thickness of 163 µm demonstrates an EMI SE of 101.65 dB, and with minimal degradation of less than 10% even after undergoing 2000 bending cycles. The remarkable EMI shielding performance, combined with the lightweight, flexibility, and mechanical stability of AgHF, positions it as a highly promising material for a wide range of EMI shielding applications in the future.
Through the combination of blow‐spinning, UV radiation, and temperature‐controlled annealing, a flexible hollow fiber EMI shielding material, silver‐hollow‐fiber (AgHF), is achieved. With a thickness of 163 µm, it demonstrates a maximum EMI shielding efficiency of 101.65 dB, and exhibits minimal performance degradation even after 2000 bending cycles. |
---|---|
ISSN: | 2365-709X 2365-709X |
DOI: | 10.1002/admt.202301333 |