Acoustofluidics: A Versatile Tool for Micro/Nano Separation at the Cellular, Subcellular, and Biomolecular Levels

Separation of micro/nanoparticles, such as cellular, subcellular and biomolecular, has attracted increasing attention because of their remarkable potential applications in various fields, including chemistry, physics, medicine, etc. Among different micro/nanoparticle separation methods, acoustofluid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials technologies 2023-07, Vol.8 (14), p.n/a
Hauptverfasser: Zhao, Zhuyang, Yang, Sha, Feng, Liu, Zhang, Ligai, Wang, Jue, Chang, Kai, Chen, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Separation of micro/nanoparticles, such as cellular, subcellular and biomolecular, has attracted increasing attention because of their remarkable potential applications in various fields, including chemistry, physics, medicine, etc. Among different micro/nanoparticle separation methods, acoustofluidics, which combines acoustics and microfluidics, has drawn the interest of researchers due to its biocompatibility, high efficiency and free labeling. In this review, the basic constitutions, mechanisms, and materials of acoustofluidics are described. Subsequently, sorts of delicately designed acoustofluidic devices, including diverse bulk acoustic wave (BAW) microfluidics and surface acoustic wave (SAW) microfluidics, are discussed, covering principles, advantages, limitations and applications in separation. Besides the introduction of advances of micro/nanoparticle separation in the BAW microfluidics, the SAW microfluidics are elaborated in detail with a focus on various configurations of interdigital transducers (IDTs), comprising straight IDT, slanted‐finger IDT, chirped IDT and focused IDT. Microfluidic systems of the acoustofluidics involve the forms of straight channels, serpentine channels, and droplets. Additionally, besides simply structured acoustofluidics, acoustofluidics integrated with other structures are also mentioned. Finally, the prospects and limitations of acoustofluidics in micro/nanoparticle separation are also discussed. The acoustofluidics reviewed here is envisioned as a versatile tool for micro/nanoparticle separation at the cellular, sub‐cellular, and biomolecular levels. In this review, apart from the basic constitutions, mechanisms and materials of acoustofluidics, the research updates recent advancements and innovations in the designs of acoustofluidic devices, such as BAW‐based devices, SAW‐based devices, microfluidic systems of acoustofluidics and the integration of acoustofluidics with other technologies. The related separation performances, benefits, and drawbacks of different designs of acoustofluidics have also been covered.
ISSN:2365-709X
2365-709X
DOI:10.1002/admt.202202201