Ultralow‐k Amorphous Boron Nitride Based on Hexagonal Ring Stacking Framework for 300 mm Silicon Technology Platform
The implementation of ultralow dielectric constant (k value ≈ 2) materials to reduce signal propagation delay in advanced electronic devices represents a critical challenge in next generations of microelectronics technologies. The introduction of well‐stacked and low polarity molecules that do not c...
Gespeichert in:
Veröffentlicht in: | Advanced materials technologies 2022-10, Vol.7 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Advanced materials technologies |
container_volume | 7 |
creator | Lin, Cheng‐Ming Hsu, Chuang‐Han Huang, Wei‐Yu Astié, Vincent Cheng, Po‐Hsien Lin, Yue‐Min Hu, Wei‐Shan Chen, Szu‐Hua Lin, Han‐Yu Li, Ming‐Yang Magyari‐Kope, Blanka Yang, Chi‐Ming Decams, Jean‐Manuel Lee, Tzu‐Lih Gui, Dong Wang, Han Woon, Wei‐Yen Lin, Pinyen Wu, Jeff Lee, Jang‐Jung Liao, Szuya Sandy Cao, Min |
description | The implementation of ultralow dielectric constant (k value ≈ 2) materials to reduce signal propagation delay in advanced electronic devices represents a critical challenge in next generations of microelectronics technologies. The introduction of well‐stacked and low polarity molecules that do not compromise film density may lead to improvements and desirable material engineering, as conventional porous SiOx derivatives exhibit detrimental degradation of thermo‐mechanical properties when their k values are further scaled down. This work presents a systematic engineering approach for controlling ultralow‐k amorphous boron nitride (aBN) deposition on 300 mm Si platforms. The results indicate that aBN grown from borazine precursor exhibits ultralow dielectric constant ≈2, high density, excellent mechanical strength, and extended thermodynamic stability. Unintentional boron ion doping during plasma dissociation that may induce artificial reductions of k value on n‐type substrates is alleviated by employing a remote microwave plasma process. Moreover, the adoption of low growth rate processes for ultralow‐k aBN deposition is found to be critical to provide for the superior mechanical strength and high density, and is attributed to the formation of hexagonal ring stacking frameworks. These results pave the way and offer engineering solutions for new ultralow‐k material introduction into future semiconductor manufacturing applications.
300 mm wafer‐scale amorphous boron nitride with ultralow dielectric constant close to 2, preserving high density of 2.1 g cm–3, and superior Young's modulus > 50 GPa is demonstrated by novel borazine‐based growth approach. Energetically favorable B‐N hexagonal ring stacking framework under low growth rate scenario is also presented. |
doi_str_mv | 10.1002/admt.202200022 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_202200022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT202200022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2892-1637b190f7933eb2bcc453d9910e443dae603309d5495c8fab54e4ac82032bd53</originalsourceid><addsrcrecordid>eNqFkM1OAjEUhRujiQTZuu4LDPZnBqZLQBET_IlA4m7SaTtQaaekHUV2PoLP6JNYglF3ru65N-e7OTkAnGPUxQiRCy5t0yWIEBQ3cgRahPaypI_Y0_EffQo6ITxHC2a4R3PSAq8L03hu3Pbz_WMNB9b5zcq9BDh03tXwTjdeSwWHPCgJ42Gi3vjS1dzAR10v4azhYr0XY8-t2jq_hpXzkCIErYUzbbSI0FyJVe2MW-7gg-FNdNgzcFJxE1Tne7bBYnw1H02S6f31zWgwTQTJGUliyH6JGar6jFJVklKINKOSMYxUmlLJVQ9RipjMUpaJvOJllqqUi5wgSkqZ0TboHv4K70Lwqio2XlvudwVGxb64Yl9c8VNcBNgB2Gqjdv-4i8Hl7fyX_QKAd3OL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultralow‐k Amorphous Boron Nitride Based on Hexagonal Ring Stacking Framework for 300 mm Silicon Technology Platform</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Lin, Cheng‐Ming ; Hsu, Chuang‐Han ; Huang, Wei‐Yu ; Astié, Vincent ; Cheng, Po‐Hsien ; Lin, Yue‐Min ; Hu, Wei‐Shan ; Chen, Szu‐Hua ; Lin, Han‐Yu ; Li, Ming‐Yang ; Magyari‐Kope, Blanka ; Yang, Chi‐Ming ; Decams, Jean‐Manuel ; Lee, Tzu‐Lih ; Gui, Dong ; Wang, Han ; Woon, Wei‐Yen ; Lin, Pinyen ; Wu, Jeff ; Lee, Jang‐Jung ; Liao, Szuya Sandy ; Cao, Min</creator><creatorcontrib>Lin, Cheng‐Ming ; Hsu, Chuang‐Han ; Huang, Wei‐Yu ; Astié, Vincent ; Cheng, Po‐Hsien ; Lin, Yue‐Min ; Hu, Wei‐Shan ; Chen, Szu‐Hua ; Lin, Han‐Yu ; Li, Ming‐Yang ; Magyari‐Kope, Blanka ; Yang, Chi‐Ming ; Decams, Jean‐Manuel ; Lee, Tzu‐Lih ; Gui, Dong ; Wang, Han ; Woon, Wei‐Yen ; Lin, Pinyen ; Wu, Jeff ; Lee, Jang‐Jung ; Liao, Szuya Sandy ; Cao, Min</creatorcontrib><description>The implementation of ultralow dielectric constant (k value ≈ 2) materials to reduce signal propagation delay in advanced electronic devices represents a critical challenge in next generations of microelectronics technologies. The introduction of well‐stacked and low polarity molecules that do not compromise film density may lead to improvements and desirable material engineering, as conventional porous SiOx derivatives exhibit detrimental degradation of thermo‐mechanical properties when their k values are further scaled down. This work presents a systematic engineering approach for controlling ultralow‐k amorphous boron nitride (aBN) deposition on 300 mm Si platforms. The results indicate that aBN grown from borazine precursor exhibits ultralow dielectric constant ≈2, high density, excellent mechanical strength, and extended thermodynamic stability. Unintentional boron ion doping during plasma dissociation that may induce artificial reductions of k value on n‐type substrates is alleviated by employing a remote microwave plasma process. Moreover, the adoption of low growth rate processes for ultralow‐k aBN deposition is found to be critical to provide for the superior mechanical strength and high density, and is attributed to the formation of hexagonal ring stacking frameworks. These results pave the way and offer engineering solutions for new ultralow‐k material introduction into future semiconductor manufacturing applications.
300 mm wafer‐scale amorphous boron nitride with ultralow dielectric constant close to 2, preserving high density of 2.1 g cm–3, and superior Young's modulus > 50 GPa is demonstrated by novel borazine‐based growth approach. Energetically favorable B‐N hexagonal ring stacking framework under low growth rate scenario is also presented.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202200022</identifier><language>eng</language><subject>300 mm Si wafers ; amorphous boron nitride ; hexagonal rings ; high density ; superior mechanical strength ; ultralow k</subject><ispartof>Advanced materials technologies, 2022-10, Vol.7 (10), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2892-1637b190f7933eb2bcc453d9910e443dae603309d5495c8fab54e4ac82032bd53</citedby><cites>FETCH-LOGICAL-c2892-1637b190f7933eb2bcc453d9910e443dae603309d5495c8fab54e4ac82032bd53</cites><orcidid>0000-0001-7299-9122 ; 0000-0002-3905-1724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.202200022$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.202200022$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lin, Cheng‐Ming</creatorcontrib><creatorcontrib>Hsu, Chuang‐Han</creatorcontrib><creatorcontrib>Huang, Wei‐Yu</creatorcontrib><creatorcontrib>Astié, Vincent</creatorcontrib><creatorcontrib>Cheng, Po‐Hsien</creatorcontrib><creatorcontrib>Lin, Yue‐Min</creatorcontrib><creatorcontrib>Hu, Wei‐Shan</creatorcontrib><creatorcontrib>Chen, Szu‐Hua</creatorcontrib><creatorcontrib>Lin, Han‐Yu</creatorcontrib><creatorcontrib>Li, Ming‐Yang</creatorcontrib><creatorcontrib>Magyari‐Kope, Blanka</creatorcontrib><creatorcontrib>Yang, Chi‐Ming</creatorcontrib><creatorcontrib>Decams, Jean‐Manuel</creatorcontrib><creatorcontrib>Lee, Tzu‐Lih</creatorcontrib><creatorcontrib>Gui, Dong</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Woon, Wei‐Yen</creatorcontrib><creatorcontrib>Lin, Pinyen</creatorcontrib><creatorcontrib>Wu, Jeff</creatorcontrib><creatorcontrib>Lee, Jang‐Jung</creatorcontrib><creatorcontrib>Liao, Szuya Sandy</creatorcontrib><creatorcontrib>Cao, Min</creatorcontrib><title>Ultralow‐k Amorphous Boron Nitride Based on Hexagonal Ring Stacking Framework for 300 mm Silicon Technology Platform</title><title>Advanced materials technologies</title><description>The implementation of ultralow dielectric constant (k value ≈ 2) materials to reduce signal propagation delay in advanced electronic devices represents a critical challenge in next generations of microelectronics technologies. The introduction of well‐stacked and low polarity molecules that do not compromise film density may lead to improvements and desirable material engineering, as conventional porous SiOx derivatives exhibit detrimental degradation of thermo‐mechanical properties when their k values are further scaled down. This work presents a systematic engineering approach for controlling ultralow‐k amorphous boron nitride (aBN) deposition on 300 mm Si platforms. The results indicate that aBN grown from borazine precursor exhibits ultralow dielectric constant ≈2, high density, excellent mechanical strength, and extended thermodynamic stability. Unintentional boron ion doping during plasma dissociation that may induce artificial reductions of k value on n‐type substrates is alleviated by employing a remote microwave plasma process. Moreover, the adoption of low growth rate processes for ultralow‐k aBN deposition is found to be critical to provide for the superior mechanical strength and high density, and is attributed to the formation of hexagonal ring stacking frameworks. These results pave the way and offer engineering solutions for new ultralow‐k material introduction into future semiconductor manufacturing applications.
300 mm wafer‐scale amorphous boron nitride with ultralow dielectric constant close to 2, preserving high density of 2.1 g cm–3, and superior Young's modulus > 50 GPa is demonstrated by novel borazine‐based growth approach. Energetically favorable B‐N hexagonal ring stacking framework under low growth rate scenario is also presented.</description><subject>300 mm Si wafers</subject><subject>amorphous boron nitride</subject><subject>hexagonal rings</subject><subject>high density</subject><subject>superior mechanical strength</subject><subject>ultralow k</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEUhRujiQTZuu4LDPZnBqZLQBET_IlA4m7SaTtQaaekHUV2PoLP6JNYglF3ru65N-e7OTkAnGPUxQiRCy5t0yWIEBQ3cgRahPaypI_Y0_EffQo6ITxHC2a4R3PSAq8L03hu3Pbz_WMNB9b5zcq9BDh03tXwTjdeSwWHPCgJ42Gi3vjS1dzAR10v4azhYr0XY8-t2jq_hpXzkCIErYUzbbSI0FyJVe2MW-7gg-FNdNgzcFJxE1Tne7bBYnw1H02S6f31zWgwTQTJGUliyH6JGar6jFJVklKINKOSMYxUmlLJVQ9RipjMUpaJvOJllqqUi5wgSkqZ0TboHv4K70Lwqio2XlvudwVGxb64Yl9c8VNcBNgB2Gqjdv-4i8Hl7fyX_QKAd3OL</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Lin, Cheng‐Ming</creator><creator>Hsu, Chuang‐Han</creator><creator>Huang, Wei‐Yu</creator><creator>Astié, Vincent</creator><creator>Cheng, Po‐Hsien</creator><creator>Lin, Yue‐Min</creator><creator>Hu, Wei‐Shan</creator><creator>Chen, Szu‐Hua</creator><creator>Lin, Han‐Yu</creator><creator>Li, Ming‐Yang</creator><creator>Magyari‐Kope, Blanka</creator><creator>Yang, Chi‐Ming</creator><creator>Decams, Jean‐Manuel</creator><creator>Lee, Tzu‐Lih</creator><creator>Gui, Dong</creator><creator>Wang, Han</creator><creator>Woon, Wei‐Yen</creator><creator>Lin, Pinyen</creator><creator>Wu, Jeff</creator><creator>Lee, Jang‐Jung</creator><creator>Liao, Szuya Sandy</creator><creator>Cao, Min</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7299-9122</orcidid><orcidid>https://orcid.org/0000-0002-3905-1724</orcidid></search><sort><creationdate>20221001</creationdate><title>Ultralow‐k Amorphous Boron Nitride Based on Hexagonal Ring Stacking Framework for 300 mm Silicon Technology Platform</title><author>Lin, Cheng‐Ming ; Hsu, Chuang‐Han ; Huang, Wei‐Yu ; Astié, Vincent ; Cheng, Po‐Hsien ; Lin, Yue‐Min ; Hu, Wei‐Shan ; Chen, Szu‐Hua ; Lin, Han‐Yu ; Li, Ming‐Yang ; Magyari‐Kope, Blanka ; Yang, Chi‐Ming ; Decams, Jean‐Manuel ; Lee, Tzu‐Lih ; Gui, Dong ; Wang, Han ; Woon, Wei‐Yen ; Lin, Pinyen ; Wu, Jeff ; Lee, Jang‐Jung ; Liao, Szuya Sandy ; Cao, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2892-1637b190f7933eb2bcc453d9910e443dae603309d5495c8fab54e4ac82032bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>300 mm Si wafers</topic><topic>amorphous boron nitride</topic><topic>hexagonal rings</topic><topic>high density</topic><topic>superior mechanical strength</topic><topic>ultralow k</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Cheng‐Ming</creatorcontrib><creatorcontrib>Hsu, Chuang‐Han</creatorcontrib><creatorcontrib>Huang, Wei‐Yu</creatorcontrib><creatorcontrib>Astié, Vincent</creatorcontrib><creatorcontrib>Cheng, Po‐Hsien</creatorcontrib><creatorcontrib>Lin, Yue‐Min</creatorcontrib><creatorcontrib>Hu, Wei‐Shan</creatorcontrib><creatorcontrib>Chen, Szu‐Hua</creatorcontrib><creatorcontrib>Lin, Han‐Yu</creatorcontrib><creatorcontrib>Li, Ming‐Yang</creatorcontrib><creatorcontrib>Magyari‐Kope, Blanka</creatorcontrib><creatorcontrib>Yang, Chi‐Ming</creatorcontrib><creatorcontrib>Decams, Jean‐Manuel</creatorcontrib><creatorcontrib>Lee, Tzu‐Lih</creatorcontrib><creatorcontrib>Gui, Dong</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Woon, Wei‐Yen</creatorcontrib><creatorcontrib>Lin, Pinyen</creatorcontrib><creatorcontrib>Wu, Jeff</creatorcontrib><creatorcontrib>Lee, Jang‐Jung</creatorcontrib><creatorcontrib>Liao, Szuya Sandy</creatorcontrib><creatorcontrib>Cao, Min</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Cheng‐Ming</au><au>Hsu, Chuang‐Han</au><au>Huang, Wei‐Yu</au><au>Astié, Vincent</au><au>Cheng, Po‐Hsien</au><au>Lin, Yue‐Min</au><au>Hu, Wei‐Shan</au><au>Chen, Szu‐Hua</au><au>Lin, Han‐Yu</au><au>Li, Ming‐Yang</au><au>Magyari‐Kope, Blanka</au><au>Yang, Chi‐Ming</au><au>Decams, Jean‐Manuel</au><au>Lee, Tzu‐Lih</au><au>Gui, Dong</au><au>Wang, Han</au><au>Woon, Wei‐Yen</au><au>Lin, Pinyen</au><au>Wu, Jeff</au><au>Lee, Jang‐Jung</au><au>Liao, Szuya Sandy</au><au>Cao, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow‐k Amorphous Boron Nitride Based on Hexagonal Ring Stacking Framework for 300 mm Silicon Technology Platform</atitle><jtitle>Advanced materials technologies</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>7</volume><issue>10</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>The implementation of ultralow dielectric constant (k value ≈ 2) materials to reduce signal propagation delay in advanced electronic devices represents a critical challenge in next generations of microelectronics technologies. The introduction of well‐stacked and low polarity molecules that do not compromise film density may lead to improvements and desirable material engineering, as conventional porous SiOx derivatives exhibit detrimental degradation of thermo‐mechanical properties when their k values are further scaled down. This work presents a systematic engineering approach for controlling ultralow‐k amorphous boron nitride (aBN) deposition on 300 mm Si platforms. The results indicate that aBN grown from borazine precursor exhibits ultralow dielectric constant ≈2, high density, excellent mechanical strength, and extended thermodynamic stability. Unintentional boron ion doping during plasma dissociation that may induce artificial reductions of k value on n‐type substrates is alleviated by employing a remote microwave plasma process. Moreover, the adoption of low growth rate processes for ultralow‐k aBN deposition is found to be critical to provide for the superior mechanical strength and high density, and is attributed to the formation of hexagonal ring stacking frameworks. These results pave the way and offer engineering solutions for new ultralow‐k material introduction into future semiconductor manufacturing applications.
300 mm wafer‐scale amorphous boron nitride with ultralow dielectric constant close to 2, preserving high density of 2.1 g cm–3, and superior Young's modulus > 50 GPa is demonstrated by novel borazine‐based growth approach. Energetically favorable B‐N hexagonal ring stacking framework under low growth rate scenario is also presented.</abstract><doi>10.1002/admt.202200022</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7299-9122</orcidid><orcidid>https://orcid.org/0000-0002-3905-1724</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2365-709X |
ispartof | Advanced materials technologies, 2022-10, Vol.7 (10), p.n/a |
issn | 2365-709X 2365-709X |
language | eng |
recordid | cdi_crossref_primary_10_1002_admt_202200022 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | 300 mm Si wafers amorphous boron nitride hexagonal rings high density superior mechanical strength ultralow k |
title | Ultralow‐k Amorphous Boron Nitride Based on Hexagonal Ring Stacking Framework for 300 mm Silicon Technology Platform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow%E2%80%90k%20Amorphous%20Boron%20Nitride%20Based%20on%20Hexagonal%20Ring%20Stacking%20Framework%20for%20300%20mm%20Silicon%20Technology%20Platform&rft.jtitle=Advanced%20materials%20technologies&rft.au=Lin,%20Cheng%E2%80%90Ming&rft.date=2022-10-01&rft.volume=7&rft.issue=10&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202200022&rft_dat=%3Cwiley_cross%3EADMT202200022%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |