Ultralow‐k Amorphous Boron Nitride Based on Hexagonal Ring Stacking Framework for 300 mm Silicon Technology Platform

The implementation of ultralow dielectric constant (k value ≈ 2) materials to reduce signal propagation delay in advanced electronic devices represents a critical challenge in next generations of microelectronics technologies. The introduction of well‐stacked and low polarity molecules that do not c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials technologies 2022-10, Vol.7 (10), p.n/a
Hauptverfasser: Lin, Cheng‐Ming, Hsu, Chuang‐Han, Huang, Wei‐Yu, Astié, Vincent, Cheng, Po‐Hsien, Lin, Yue‐Min, Hu, Wei‐Shan, Chen, Szu‐Hua, Lin, Han‐Yu, Li, Ming‐Yang, Magyari‐Kope, Blanka, Yang, Chi‐Ming, Decams, Jean‐Manuel, Lee, Tzu‐Lih, Gui, Dong, Wang, Han, Woon, Wei‐Yen, Lin, Pinyen, Wu, Jeff, Lee, Jang‐Jung, Liao, Szuya Sandy, Cao, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The implementation of ultralow dielectric constant (k value ≈ 2) materials to reduce signal propagation delay in advanced electronic devices represents a critical challenge in next generations of microelectronics technologies. The introduction of well‐stacked and low polarity molecules that do not compromise film density may lead to improvements and desirable material engineering, as conventional porous SiOx derivatives exhibit detrimental degradation of thermo‐mechanical properties when their k values are further scaled down. This work presents a systematic engineering approach for controlling ultralow‐k amorphous boron nitride (aBN) deposition on 300 mm Si platforms. The results indicate that aBN grown from borazine precursor exhibits ultralow dielectric constant ≈2, high density, excellent mechanical strength, and extended thermodynamic stability. Unintentional boron ion doping during plasma dissociation that may induce artificial reductions of k value on n‐type substrates is alleviated by employing a remote microwave plasma process. Moreover, the adoption of low growth rate processes for ultralow‐k aBN deposition is found to be critical to provide for the superior mechanical strength and high density, and is attributed to the formation of hexagonal ring stacking frameworks. These results pave the way and offer engineering solutions for new ultralow‐k material introduction into future semiconductor manufacturing applications. 300 mm wafer‐scale amorphous boron nitride with ultralow dielectric constant close to 2, preserving high density of 2.1 g cm–3, and superior Young's modulus > 50 GPa is demonstrated by novel borazine‐based growth approach. Energetically favorable B‐N hexagonal ring stacking framework under low growth rate scenario is also presented.
ISSN:2365-709X
2365-709X
DOI:10.1002/admt.202200022