Cortical‐Folding‐Inspired Multifunctional Reduced Graphene Oxide Microarchitecture Arrays on Curved Substrates
Although controlled wrinkling is demonstrated to be a powerful tool for micro/nanofabrication, large‐area fabrication of microarchitecture arrays on curved substrates by surface wrinkling still remains challenging. Inspired by the cortical folding, a facile method for transforming graphene oxide (GO...
Gespeichert in:
Veröffentlicht in: | Advanced materials technologies 2022-05, Vol.7 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although controlled wrinkling is demonstrated to be a powerful tool for micro/nanofabrication, large‐area fabrication of microarchitecture arrays on curved substrates by surface wrinkling still remains challenging. Inspired by the cortical folding, a facile method for transforming graphene oxide (GO) patterns into multiscale microarchitecture arrays on curved substrates is developed. Mass production of hierarchical GO papillae arrays can be realized by homogeneous compression of patterned GO/rubber bilayers. The reduced GO (rGO) papillae arrays show superhydrophobicity with tunable adhesion to water, enabling good performance in microdroplet manipulation. Besides, the papillae are capable of regulating the formation of microcracks in the rGO films upon stretching. Similar to the mechanical sensing system of spiders, a crack‐based strain sensor with high gauge factor (≈81), good linearity (0–15%), and fast responding speed ( |
---|---|
ISSN: | 2365-709X 2365-709X |
DOI: | 10.1002/admt.202101094 |