Multi‐Functional MoO 3 Doping of Carbon‐Nanotube Top Electrodes for Highly Transparent and Efficient Semi‐Transparent Perovskite Solar Cells
MoO 3 doping of carbon‐nanotube top electrodes in perovskite solar cells is multi‐functional and facilitates p‐doping, favorable energy‐level alignment, and enhanced hole transport. The optimal layer thickness of MoO 3 (8 nm) is determined for decreasing the sheet resistance of carbon‐nanotube elect...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2022-04, Vol.9 (11) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Advanced materials interfaces |
container_volume | 9 |
creator | Seo, Seungju Akino, Kosuke Nam, Jeong‐Seok Shawky, Ahmed Lin, Hao‐Sheng Nagaya, Hiroki Kauppinen, Esko I. Xiang, Rong Matsuo, Yutaka Jeon, Il Maruyama, Shigeo |
description | MoO
3
doping of carbon‐nanotube top electrodes in perovskite solar cells is multi‐functional and facilitates p‐doping, favorable energy‐level alignment, and enhanced hole transport. The optimal layer thickness of MoO
3
(8 nm) is determined for decreasing the sheet resistance of carbon‐nanotube electrodes without damaging the perovskite film. The sheet resistance decreases by approximately one‐third from its original value, which is a substantially better result than that previously reported for acid doping of carbon‐nanotube top electrodes. MoO
3
deposition lowers the Fermi level of the carbon‐nanotube electrode, improving its energy‐level alignment and hole‐transfer performance. When coated with 2,2′,7,7′‐tetrakis[N,N‐di(4‐methoxyphenyl)amino]‐9,9′‐spirobifluorene (spiro‐MeOTAD), MoO
3
crystallizes on the carbon nanotubes and further enhances hole collection. Semi‐transparent perovskite solar cells with MoO
3
‐doped carbon‐nanotube electrodes have a power conversion efficiency of 17.3% with a transmittance of approximately 60% (at a wavelength of 1000 nm). Because of their favorable transparency in the infrared region, these perovskite solar cells are evaluated for use in a tandem structure with silicon solar cells via computational simulations. The predicted device efficiency (23.7%) exceeds that of conventional indium‐tin‐oxide‐based tandem solar cells (23.0%). |
doi_str_mv | 10.1002/admi.202101595 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admi_202101595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_admi_202101595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c845-4703cb9f68d183824ec7b29f3b8c7322026e8e707a45a809a3319a746c7648913</originalsourceid><addsrcrecordid>eNpNkN1KwzAAhYMoOOZuvc4LdOanbdJLqZsbbE5Y70uaJjOaJSXphN35COIj-iSuKLKrcw4czoEPgFuMphghcifavZkSRDDCWZFdgBHBRZ4wmqHLM38NJjG-IoQwJphwOgJf64PtzffH5_zgZG-8Exau_QZS-OA743bQa1iK0Hh36jwJ5_tDo2DlOzizSvbBtypC7QNcmN2LPcIqCBc7EZTroXAtnGltpBnSVu2Hn_PCswr-Pb6ZXsGttyLAUlkbb8CVFjaqyZ-OQTWfVeUiWW0el-X9KpE8zZKUISqbQue8xZxykirJGlJo2nDJKDmhyBVXDDGRZoKjQlCKC8HSXLI85QWmYzD9nZXBxxiUrrtg9iIca4zqgWk9MK3_mdIfKmZuGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi‐Functional MoO 3 Doping of Carbon‐Nanotube Top Electrodes for Highly Transparent and Efficient Semi‐Transparent Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Seo, Seungju ; Akino, Kosuke ; Nam, Jeong‐Seok ; Shawky, Ahmed ; Lin, Hao‐Sheng ; Nagaya, Hiroki ; Kauppinen, Esko I. ; Xiang, Rong ; Matsuo, Yutaka ; Jeon, Il ; Maruyama, Shigeo</creator><creatorcontrib>Seo, Seungju ; Akino, Kosuke ; Nam, Jeong‐Seok ; Shawky, Ahmed ; Lin, Hao‐Sheng ; Nagaya, Hiroki ; Kauppinen, Esko I. ; Xiang, Rong ; Matsuo, Yutaka ; Jeon, Il ; Maruyama, Shigeo</creatorcontrib><description>MoO
3
doping of carbon‐nanotube top electrodes in perovskite solar cells is multi‐functional and facilitates p‐doping, favorable energy‐level alignment, and enhanced hole transport. The optimal layer thickness of MoO
3
(8 nm) is determined for decreasing the sheet resistance of carbon‐nanotube electrodes without damaging the perovskite film. The sheet resistance decreases by approximately one‐third from its original value, which is a substantially better result than that previously reported for acid doping of carbon‐nanotube top electrodes. MoO
3
deposition lowers the Fermi level of the carbon‐nanotube electrode, improving its energy‐level alignment and hole‐transfer performance. When coated with 2,2′,7,7′‐tetrakis[N,N‐di(4‐methoxyphenyl)amino]‐9,9′‐spirobifluorene (spiro‐MeOTAD), MoO
3
crystallizes on the carbon nanotubes and further enhances hole collection. Semi‐transparent perovskite solar cells with MoO
3
‐doped carbon‐nanotube electrodes have a power conversion efficiency of 17.3% with a transmittance of approximately 60% (at a wavelength of 1000 nm). Because of their favorable transparency in the infrared region, these perovskite solar cells are evaluated for use in a tandem structure with silicon solar cells via computational simulations. The predicted device efficiency (23.7%) exceeds that of conventional indium‐tin‐oxide‐based tandem solar cells (23.0%).</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202101595</identifier><language>eng</language><ispartof>Advanced materials interfaces, 2022-04, Vol.9 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c845-4703cb9f68d183824ec7b29f3b8c7322026e8e707a45a809a3319a746c7648913</citedby><cites>FETCH-LOGICAL-c845-4703cb9f68d183824ec7b29f3b8c7322026e8e707a45a809a3319a746c7648913</cites><orcidid>0000-0002-1676-7172 ; 0000-0003-3694-3070 ; 0000-0002-4220-8374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Seo, Seungju</creatorcontrib><creatorcontrib>Akino, Kosuke</creatorcontrib><creatorcontrib>Nam, Jeong‐Seok</creatorcontrib><creatorcontrib>Shawky, Ahmed</creatorcontrib><creatorcontrib>Lin, Hao‐Sheng</creatorcontrib><creatorcontrib>Nagaya, Hiroki</creatorcontrib><creatorcontrib>Kauppinen, Esko I.</creatorcontrib><creatorcontrib>Xiang, Rong</creatorcontrib><creatorcontrib>Matsuo, Yutaka</creatorcontrib><creatorcontrib>Jeon, Il</creatorcontrib><creatorcontrib>Maruyama, Shigeo</creatorcontrib><title>Multi‐Functional MoO 3 Doping of Carbon‐Nanotube Top Electrodes for Highly Transparent and Efficient Semi‐Transparent Perovskite Solar Cells</title><title>Advanced materials interfaces</title><description>MoO
3
doping of carbon‐nanotube top electrodes in perovskite solar cells is multi‐functional and facilitates p‐doping, favorable energy‐level alignment, and enhanced hole transport. The optimal layer thickness of MoO
3
(8 nm) is determined for decreasing the sheet resistance of carbon‐nanotube electrodes without damaging the perovskite film. The sheet resistance decreases by approximately one‐third from its original value, which is a substantially better result than that previously reported for acid doping of carbon‐nanotube top electrodes. MoO
3
deposition lowers the Fermi level of the carbon‐nanotube electrode, improving its energy‐level alignment and hole‐transfer performance. When coated with 2,2′,7,7′‐tetrakis[N,N‐di(4‐methoxyphenyl)amino]‐9,9′‐spirobifluorene (spiro‐MeOTAD), MoO
3
crystallizes on the carbon nanotubes and further enhances hole collection. Semi‐transparent perovskite solar cells with MoO
3
‐doped carbon‐nanotube electrodes have a power conversion efficiency of 17.3% with a transmittance of approximately 60% (at a wavelength of 1000 nm). Because of their favorable transparency in the infrared region, these perovskite solar cells are evaluated for use in a tandem structure with silicon solar cells via computational simulations. The predicted device efficiency (23.7%) exceeds that of conventional indium‐tin‐oxide‐based tandem solar cells (23.0%).</description><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkN1KwzAAhYMoOOZuvc4LdOanbdJLqZsbbE5Y70uaJjOaJSXphN35COIj-iSuKLKrcw4czoEPgFuMphghcifavZkSRDDCWZFdgBHBRZ4wmqHLM38NJjG-IoQwJphwOgJf64PtzffH5_zgZG-8Exau_QZS-OA743bQa1iK0Hh36jwJ5_tDo2DlOzizSvbBtypC7QNcmN2LPcIqCBc7EZTroXAtnGltpBnSVu2Hn_PCswr-Pb6ZXsGttyLAUlkbb8CVFjaqyZ-OQTWfVeUiWW0el-X9KpE8zZKUISqbQue8xZxykirJGlJo2nDJKDmhyBVXDDGRZoKjQlCKC8HSXLI85QWmYzD9nZXBxxiUrrtg9iIca4zqgWk9MK3_mdIfKmZuGw</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Seo, Seungju</creator><creator>Akino, Kosuke</creator><creator>Nam, Jeong‐Seok</creator><creator>Shawky, Ahmed</creator><creator>Lin, Hao‐Sheng</creator><creator>Nagaya, Hiroki</creator><creator>Kauppinen, Esko I.</creator><creator>Xiang, Rong</creator><creator>Matsuo, Yutaka</creator><creator>Jeon, Il</creator><creator>Maruyama, Shigeo</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1676-7172</orcidid><orcidid>https://orcid.org/0000-0003-3694-3070</orcidid><orcidid>https://orcid.org/0000-0002-4220-8374</orcidid></search><sort><creationdate>202204</creationdate><title>Multi‐Functional MoO 3 Doping of Carbon‐Nanotube Top Electrodes for Highly Transparent and Efficient Semi‐Transparent Perovskite Solar Cells</title><author>Seo, Seungju ; Akino, Kosuke ; Nam, Jeong‐Seok ; Shawky, Ahmed ; Lin, Hao‐Sheng ; Nagaya, Hiroki ; Kauppinen, Esko I. ; Xiang, Rong ; Matsuo, Yutaka ; Jeon, Il ; Maruyama, Shigeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c845-4703cb9f68d183824ec7b29f3b8c7322026e8e707a45a809a3319a746c7648913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Seungju</creatorcontrib><creatorcontrib>Akino, Kosuke</creatorcontrib><creatorcontrib>Nam, Jeong‐Seok</creatorcontrib><creatorcontrib>Shawky, Ahmed</creatorcontrib><creatorcontrib>Lin, Hao‐Sheng</creatorcontrib><creatorcontrib>Nagaya, Hiroki</creatorcontrib><creatorcontrib>Kauppinen, Esko I.</creatorcontrib><creatorcontrib>Xiang, Rong</creatorcontrib><creatorcontrib>Matsuo, Yutaka</creatorcontrib><creatorcontrib>Jeon, Il</creatorcontrib><creatorcontrib>Maruyama, Shigeo</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Seungju</au><au>Akino, Kosuke</au><au>Nam, Jeong‐Seok</au><au>Shawky, Ahmed</au><au>Lin, Hao‐Sheng</au><au>Nagaya, Hiroki</au><au>Kauppinen, Esko I.</au><au>Xiang, Rong</au><au>Matsuo, Yutaka</au><au>Jeon, Il</au><au>Maruyama, Shigeo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐Functional MoO 3 Doping of Carbon‐Nanotube Top Electrodes for Highly Transparent and Efficient Semi‐Transparent Perovskite Solar Cells</atitle><jtitle>Advanced materials interfaces</jtitle><date>2022-04</date><risdate>2022</risdate><volume>9</volume><issue>11</issue><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>MoO
3
doping of carbon‐nanotube top electrodes in perovskite solar cells is multi‐functional and facilitates p‐doping, favorable energy‐level alignment, and enhanced hole transport. The optimal layer thickness of MoO
3
(8 nm) is determined for decreasing the sheet resistance of carbon‐nanotube electrodes without damaging the perovskite film. The sheet resistance decreases by approximately one‐third from its original value, which is a substantially better result than that previously reported for acid doping of carbon‐nanotube top electrodes. MoO
3
deposition lowers the Fermi level of the carbon‐nanotube electrode, improving its energy‐level alignment and hole‐transfer performance. When coated with 2,2′,7,7′‐tetrakis[N,N‐di(4‐methoxyphenyl)amino]‐9,9′‐spirobifluorene (spiro‐MeOTAD), MoO
3
crystallizes on the carbon nanotubes and further enhances hole collection. Semi‐transparent perovskite solar cells with MoO
3
‐doped carbon‐nanotube electrodes have a power conversion efficiency of 17.3% with a transmittance of approximately 60% (at a wavelength of 1000 nm). Because of their favorable transparency in the infrared region, these perovskite solar cells are evaluated for use in a tandem structure with silicon solar cells via computational simulations. The predicted device efficiency (23.7%) exceeds that of conventional indium‐tin‐oxide‐based tandem solar cells (23.0%).</abstract><doi>10.1002/admi.202101595</doi><orcidid>https://orcid.org/0000-0002-1676-7172</orcidid><orcidid>https://orcid.org/0000-0003-3694-3070</orcidid><orcidid>https://orcid.org/0000-0002-4220-8374</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7350 |
ispartof | Advanced materials interfaces, 2022-04, Vol.9 (11) |
issn | 2196-7350 2196-7350 |
language | eng |
recordid | cdi_crossref_primary_10_1002_admi_202101595 |
source | Wiley Online Library Journals Frontfile Complete |
title | Multi‐Functional MoO 3 Doping of Carbon‐Nanotube Top Electrodes for Highly Transparent and Efficient Semi‐Transparent Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90Functional%20MoO%203%20Doping%20of%20Carbon%E2%80%90Nanotube%20Top%20Electrodes%20for%20Highly%20Transparent%20and%20Efficient%20Semi%E2%80%90Transparent%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Seo,%20Seungju&rft.date=2022-04&rft.volume=9&rft.issue=11&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202101595&rft_dat=%3Ccrossref%3E10_1002_admi_202101595%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |