Multi‐Functional MoO 3 Doping of Carbon‐Nanotube Top Electrodes for Highly Transparent and Efficient Semi‐Transparent Perovskite Solar Cells

MoO 3 doping of carbon‐nanotube top electrodes in perovskite solar cells is multi‐functional and facilitates p‐doping, favorable energy‐level alignment, and enhanced hole transport. The optimal layer thickness of MoO 3 (8 nm) is determined for decreasing the sheet resistance of carbon‐nanotube elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2022-04, Vol.9 (11)
Hauptverfasser: Seo, Seungju, Akino, Kosuke, Nam, Jeong‐Seok, Shawky, Ahmed, Lin, Hao‐Sheng, Nagaya, Hiroki, Kauppinen, Esko I., Xiang, Rong, Matsuo, Yutaka, Jeon, Il, Maruyama, Shigeo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MoO 3 doping of carbon‐nanotube top electrodes in perovskite solar cells is multi‐functional and facilitates p‐doping, favorable energy‐level alignment, and enhanced hole transport. The optimal layer thickness of MoO 3 (8 nm) is determined for decreasing the sheet resistance of carbon‐nanotube electrodes without damaging the perovskite film. The sheet resistance decreases by approximately one‐third from its original value, which is a substantially better result than that previously reported for acid doping of carbon‐nanotube top electrodes. MoO 3 deposition lowers the Fermi level of the carbon‐nanotube electrode, improving its energy‐level alignment and hole‐transfer performance. When coated with 2,2′,7,7′‐tetrakis[N,N‐di(4‐methoxyphenyl)amino]‐9,9′‐spirobifluorene (spiro‐MeOTAD), MoO 3 crystallizes on the carbon nanotubes and further enhances hole collection. Semi‐transparent perovskite solar cells with MoO 3 ‐doped carbon‐nanotube electrodes have a power conversion efficiency of 17.3% with a transmittance of approximately 60% (at a wavelength of 1000 nm). Because of their favorable transparency in the infrared region, these perovskite solar cells are evaluated for use in a tandem structure with silicon solar cells via computational simulations. The predicted device efficiency (23.7%) exceeds that of conventional indium‐tin‐oxide‐based tandem solar cells (23.0%).
ISSN:2196-7350
2196-7350
DOI:10.1002/admi.202101595