Li-Site Defects Induce Formation of Li-Rich Impurity Phases: Implications for Charge Distribution and Performance of LiNi 0.5-x M x Mn 1.5 O 4 Cathodes (M = Fe and Mg; x = 0.05-0.2)
An understanding of the structural properties that allow for optimal cathode performance, and their origin, is necessary for devising advanced cathode design strategies and accelerating the commercialisation of next-generation cathodes. High-voltage, Fe- and Mg-substituted LiNi Mn O cathodes offer a...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-08, Vol.36 (32), p.e2400343 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An understanding of the structural properties that allow for optimal cathode performance, and their origin, is necessary for devising advanced cathode design strategies and accelerating the commercialisation of next-generation cathodes. High-voltage, Fe- and Mg-substituted LiNi
Mn
O
cathodes offer a low-cost and cobalt-free, yet energy-dense alternative to commercial cathodes. In this work, we explore the effect of substituents on several important structure properties including Ni/Mn ordering, charge distribution and extrinsic defects. In the cation-disordered samples studied, we observe a correlation between increased Fe/Mg substitution, Li-site defects and Li-rich impurity phase formation - the concentrations of which are greater for Mg-substituted samples. We attribute this to the lower formation energy of Mg
defects when compared to Fe
defects. Li-site defect-induced impurity phases consequently alter the charge distribution of the system, resulting in increased [Mn
] with Fe/Mg substitution. In addition to impurity phases, other charge compensators were also investigated to explain the origin of Mn
(extrinsic defects, [Ni
], oxygen vacancies and intrinsic off-stoichiometry), although their effects were found to be negligible. This article is protected by copyright. All rights reserved. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202400343 |