Energy Efficient Neuro-Inspired Phase-Change Memory Based on Ge 4 Sb 6 Te 7 as a Novel Epitaxial Nanocomposite

Phase-change memory (PCM) is a promising candidate for neuro-inspired, data-intensive artificial intelligence applications, which relies on the physical attributes of PCM materials including gradual change of resistance states and multilevel operation with low resistance drift. However, achieving th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-07, Vol.35 (30), p.e2300107
Hauptverfasser: Khan, Asir Intisar, Yu, Heshan, Zhang, Huairuo, Goggin, John R, Kwon, Heungdong, Wu, Xiangjin, Perez, Christopher, Neilson, Kathryn M, Asheghi, Mehdi, Goodson, Kenneth E, Vora, Patrick M, Davydov, Albert, Takeuchi, Ichiro, Pop, Eric
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phase-change memory (PCM) is a promising candidate for neuro-inspired, data-intensive artificial intelligence applications, which relies on the physical attributes of PCM materials including gradual change of resistance states and multilevel operation with low resistance drift. However, achieving these attributes simultaneously remains a fundamental challenge for PCM materials such as Ge Sb Te , the most commonly used material. Here bi-directional gradual resistance changes with ≈10× resistance window using low energy pulses are demonstrated in nanoscale PCM devices based on Ge Sb Te , a new phase-change nanocomposite material . These devices show 13 resistance levels with low resistance drift for the first 8 levels, a resistance on/off ratio of ≈1000, and low variability. These attributes are enabled by the unique microstructural and electro-thermal properties of Ge Sb Te , a nanocomposite consisting of epitaxial SbTe nanoclusters within the Ge-Sb-Te matrix, and a higher crystallization but lower melting temperature than Ge Sb Te . These results advance the pathway toward energy-efficient analog computing using PCM.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202300107