Biaxially Strained MoS 2 Nanoshells with Controllable Layers Boost Alkaline Hydrogen Evolution

Strain in layered transition-metal dichalcogenides (TMDs) is a type of effective approach to enhance the catalytic performance by activating their inert basal plane. However, compared with traditional uniaxial strain, the influence of biaxial strain and the TMD layer number on the local electronic c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-07, Vol.34 (27), p.e2202195
Hauptverfasser: Zhang, Tao, Liu, Yipu, Yu, Jie, Ye, Qitong, Yang, Liang, Li, Yue, Fan, Hong Jin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Strain in layered transition-metal dichalcogenides (TMDs) is a type of effective approach to enhance the catalytic performance by activating their inert basal plane. However, compared with traditional uniaxial strain, the influence of biaxial strain and the TMD layer number on the local electronic configuration remains unexplored. Herein, via a new in situ self-vulcanization strategy, biaxially strained MoS nanoshells in the form of a single-crystalline Ni S @MoS core-shell heterostructure are realized, where the MoS layer is precisely controlled between the 1 and 5 layers. In particular, an electrode with the bilayer MoS nanoshells shows a remarkable hydrogen evolution reaction activity with a small overpotential of 78.1 mV at 10 mA cm , and negligible activity degradation after durability testing. Density functional theory calculations reveal the contribution of the optimized biaxial strain together with the induced sulfur vacancies and identify the origin of superior catalytic sites in these biaxially strained MoS nanoshells. This work highlights the importance of the atomic-scale layer number and multiaxial strain in unlocking the potential of 2D TMD electrocatalysts.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202202195