Inside Front Cover: Rigid, Self-Assembled Hydrogel Composed of a Modified Aromatic Dipeptide (Adv. Mater. 11/2006)

Formation of a self‐assembled hydrogel with remarkable mechanical rigidity using a very simple building block, 9‐fluorenylmethoxycarbonyl‐diphenylalanine peptide, is reported by Gazit and co‐workers on p. 1365. The hydrogel forms under mild conditions in aqueous solution, using a much shorter peptid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2006-06, Vol.18 (11), p.n/a
Hauptverfasser: Mahler, A., Reches, M., Rechter, M., Cohen, S., Gazit, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Formation of a self‐assembled hydrogel with remarkable mechanical rigidity using a very simple building block, 9‐fluorenylmethoxycarbonyl‐diphenylalanine peptide, is reported by Gazit and co‐workers on p. 1365. The hydrogel forms under mild conditions in aqueous solution, using a much shorter peptide than previously reported, and has physical properties exceeding those of hydrogels formed by much longer polypeptides, as previously reported for diphenylalanine nanotubes. The rigidity is likely facilitated by the aromatic nature of the peptide building block. The hydrogel is stable under extreme conditions, and can be shaped in accordance to the vessel it is assembled in, making it useful for a variety of applications. A simple dipeptide self‐assembles into a biocompatible hydrogel (see figure and inside cover). This novel biomaterial is extremely simple to prepare and has a remarkable rigidity. It is very stable under extreme conditions, can be injected, and can be shaped according to the vessel it has been assembled in. The hydrogel allows a wide variety of possible biomedical applications including tissue engineering, axonal regeneration, and controlled drug release.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.200690046