Rear‐Passivated Ultrathin Cu(In,Ga)Se 2 Films by Al 2 O 3 Nanostructures Using Glancing Angle Deposition Toward Photovoltaic Devices with Enhanced Efficiency
In this work, for the first time, the addition of aluminum oxide nanostructures (Al 2 O 3 NSs) grown by glancing angle deposition (GLAD) is investigated on an ultrathin Cu(In,Ga)Se 2 device (400 nm) fabricated using a sequential process, i.e., post‐selenization of the metallic precursor layer. The m...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2019-11, Vol.29 (48) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 48 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 29 |
creator | Chen, Chia‐Wei Tsai, Hung‐Wei Wang, Yi‐Chung Shih, Yu‐Chuan Su, Teng‐Yu Yang, Chen‐Hua Lin, Wei‐Sheng Shen, Chang‐Hong Shieh, Jia‐Ming Chueh, Yu‐Lun |
description | In this work, for the first time, the addition of aluminum oxide nanostructures (Al
2
O
3
NSs) grown by glancing angle deposition (GLAD) is investigated on an ultrathin Cu(In,Ga)Se
2
device (400 nm) fabricated using a sequential process, i.e., post‐selenization of the metallic precursor layer. The most striking observation to emerge from this study is the alleviation of phase separation after adding the Al
2
O
3
NSs with improved Se diffusion into the non‐uniformed metallic precursor due to the surface roughness resulting from the Al
2
O
3
NSs. In addition, the raised Na concentration at the rear surface can be attributed to the increased diffusion of Na ion facilitated by Al
2
O
3
NSs. The coverage and thickness of the Al
2
O
3
NSs significantly affects the cell performance because of an increase in shunt resistance associated with the formation of Na
2
Se
X
and phase separation. The passivation effect attributed to the Al
2
O
3
NSs is well studied using the bias‐EQE measurement and
J–V
characteristics under dark and illuminated conditions. With the optimization of the Al
2
O
3
NSs, the remarkable enhancement in the cell performance occurs, exhibiting a power conversion efficiency increase from 2.83% to 5.33%, demonstrating a promising method for improving ultrathin Cu(In,Ga)Se
2
devices, and providing significant opportunities for further applications. |
doi_str_mv | 10.1002/adfm.201905040 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201905040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_201905040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c840-ef6372d2113f7d939eec3633b6a907789d41e6062b8f6fa39ec37de6af2cae5b3</originalsourceid><addsrcrecordid>eNo9kM1OAjEUhSdGExHduu5SEwf7M3SYJUFAEiJEIXE3udNpmZqhJW2BsPMRfAPfzSdxiIbVPTcn5-Tki6JbgjsEY_oIpVp3KCYZ7uIEn0UtwgmPGaa985Mm75fRlfcfGJM0ZUkr-n6V4H4-v-bgvd5BkCVa1sFBqLRBg-3dxDyM4f5NIopGul57VBxQv26-GWLoBYz1wW1F2Drp0dJrs0LjGow4ir5Z1RI9yY31Omhr0MLuwZVoXtlgd7YOoEVj77RosnsdKjQ0VZNtJgyV0kJLIw7X0YWC2sub_9uOFqPhYvAcT2fjyaA_jUUvwbFUnKW0pIQwlZYZy6QUjDNWcMhwmvayMiGSY06LnuIKGl-wtJQcFBUguwVrR52_WuGs906qfOP0GtwhJzg_0s2PdPMTXfYL1fxwaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rear‐Passivated Ultrathin Cu(In,Ga)Se 2 Films by Al 2 O 3 Nanostructures Using Glancing Angle Deposition Toward Photovoltaic Devices with Enhanced Efficiency</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Chia‐Wei ; Tsai, Hung‐Wei ; Wang, Yi‐Chung ; Shih, Yu‐Chuan ; Su, Teng‐Yu ; Yang, Chen‐Hua ; Lin, Wei‐Sheng ; Shen, Chang‐Hong ; Shieh, Jia‐Ming ; Chueh, Yu‐Lun</creator><creatorcontrib>Chen, Chia‐Wei ; Tsai, Hung‐Wei ; Wang, Yi‐Chung ; Shih, Yu‐Chuan ; Su, Teng‐Yu ; Yang, Chen‐Hua ; Lin, Wei‐Sheng ; Shen, Chang‐Hong ; Shieh, Jia‐Ming ; Chueh, Yu‐Lun</creatorcontrib><description>In this work, for the first time, the addition of aluminum oxide nanostructures (Al
2
O
3
NSs) grown by glancing angle deposition (GLAD) is investigated on an ultrathin Cu(In,Ga)Se
2
device (400 nm) fabricated using a sequential process, i.e., post‐selenization of the metallic precursor layer. The most striking observation to emerge from this study is the alleviation of phase separation after adding the Al
2
O
3
NSs with improved Se diffusion into the non‐uniformed metallic precursor due to the surface roughness resulting from the Al
2
O
3
NSs. In addition, the raised Na concentration at the rear surface can be attributed to the increased diffusion of Na ion facilitated by Al
2
O
3
NSs. The coverage and thickness of the Al
2
O
3
NSs significantly affects the cell performance because of an increase in shunt resistance associated with the formation of Na
2
Se
X
and phase separation. The passivation effect attributed to the Al
2
O
3
NSs is well studied using the bias‐EQE measurement and
J–V
characteristics under dark and illuminated conditions. With the optimization of the Al
2
O
3
NSs, the remarkable enhancement in the cell performance occurs, exhibiting a power conversion efficiency increase from 2.83% to 5.33%, demonstrating a promising method for improving ultrathin Cu(In,Ga)Se
2
devices, and providing significant opportunities for further applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201905040</identifier><language>eng</language><ispartof>Advanced functional materials, 2019-11, Vol.29 (48)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c840-ef6372d2113f7d939eec3633b6a907789d41e6062b8f6fa39ec37de6af2cae5b3</citedby><cites>FETCH-LOGICAL-c840-ef6372d2113f7d939eec3633b6a907789d41e6062b8f6fa39ec37de6af2cae5b3</cites><orcidid>0000-0002-0155-9987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Chia‐Wei</creatorcontrib><creatorcontrib>Tsai, Hung‐Wei</creatorcontrib><creatorcontrib>Wang, Yi‐Chung</creatorcontrib><creatorcontrib>Shih, Yu‐Chuan</creatorcontrib><creatorcontrib>Su, Teng‐Yu</creatorcontrib><creatorcontrib>Yang, Chen‐Hua</creatorcontrib><creatorcontrib>Lin, Wei‐Sheng</creatorcontrib><creatorcontrib>Shen, Chang‐Hong</creatorcontrib><creatorcontrib>Shieh, Jia‐Ming</creatorcontrib><creatorcontrib>Chueh, Yu‐Lun</creatorcontrib><title>Rear‐Passivated Ultrathin Cu(In,Ga)Se 2 Films by Al 2 O 3 Nanostructures Using Glancing Angle Deposition Toward Photovoltaic Devices with Enhanced Efficiency</title><title>Advanced functional materials</title><description>In this work, for the first time, the addition of aluminum oxide nanostructures (Al
2
O
3
NSs) grown by glancing angle deposition (GLAD) is investigated on an ultrathin Cu(In,Ga)Se
2
device (400 nm) fabricated using a sequential process, i.e., post‐selenization of the metallic precursor layer. The most striking observation to emerge from this study is the alleviation of phase separation after adding the Al
2
O
3
NSs with improved Se diffusion into the non‐uniformed metallic precursor due to the surface roughness resulting from the Al
2
O
3
NSs. In addition, the raised Na concentration at the rear surface can be attributed to the increased diffusion of Na ion facilitated by Al
2
O
3
NSs. The coverage and thickness of the Al
2
O
3
NSs significantly affects the cell performance because of an increase in shunt resistance associated with the formation of Na
2
Se
X
and phase separation. The passivation effect attributed to the Al
2
O
3
NSs is well studied using the bias‐EQE measurement and
J–V
characteristics under dark and illuminated conditions. With the optimization of the Al
2
O
3
NSs, the remarkable enhancement in the cell performance occurs, exhibiting a power conversion efficiency increase from 2.83% to 5.33%, demonstrating a promising method for improving ultrathin Cu(In,Ga)Se
2
devices, and providing significant opportunities for further applications.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OAjEUhSdGExHduu5SEwf7M3SYJUFAEiJEIXE3udNpmZqhJW2BsPMRfAPfzSdxiIbVPTcn5-Tki6JbgjsEY_oIpVp3KCYZ7uIEn0UtwgmPGaa985Mm75fRlfcfGJM0ZUkr-n6V4H4-v-bgvd5BkCVa1sFBqLRBg-3dxDyM4f5NIopGul57VBxQv26-GWLoBYz1wW1F2Drp0dJrs0LjGow4ir5Z1RI9yY31Omhr0MLuwZVoXtlgd7YOoEVj77RosnsdKjQ0VZNtJgyV0kJLIw7X0YWC2sub_9uOFqPhYvAcT2fjyaA_jUUvwbFUnKW0pIQwlZYZy6QUjDNWcMhwmvayMiGSY06LnuIKGl-wtJQcFBUguwVrR52_WuGs906qfOP0GtwhJzg_0s2PdPMTXfYL1fxwaQ</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Chen, Chia‐Wei</creator><creator>Tsai, Hung‐Wei</creator><creator>Wang, Yi‐Chung</creator><creator>Shih, Yu‐Chuan</creator><creator>Su, Teng‐Yu</creator><creator>Yang, Chen‐Hua</creator><creator>Lin, Wei‐Sheng</creator><creator>Shen, Chang‐Hong</creator><creator>Shieh, Jia‐Ming</creator><creator>Chueh, Yu‐Lun</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0155-9987</orcidid></search><sort><creationdate>201911</creationdate><title>Rear‐Passivated Ultrathin Cu(In,Ga)Se 2 Films by Al 2 O 3 Nanostructures Using Glancing Angle Deposition Toward Photovoltaic Devices with Enhanced Efficiency</title><author>Chen, Chia‐Wei ; Tsai, Hung‐Wei ; Wang, Yi‐Chung ; Shih, Yu‐Chuan ; Su, Teng‐Yu ; Yang, Chen‐Hua ; Lin, Wei‐Sheng ; Shen, Chang‐Hong ; Shieh, Jia‐Ming ; Chueh, Yu‐Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c840-ef6372d2113f7d939eec3633b6a907789d41e6062b8f6fa39ec37de6af2cae5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chia‐Wei</creatorcontrib><creatorcontrib>Tsai, Hung‐Wei</creatorcontrib><creatorcontrib>Wang, Yi‐Chung</creatorcontrib><creatorcontrib>Shih, Yu‐Chuan</creatorcontrib><creatorcontrib>Su, Teng‐Yu</creatorcontrib><creatorcontrib>Yang, Chen‐Hua</creatorcontrib><creatorcontrib>Lin, Wei‐Sheng</creatorcontrib><creatorcontrib>Shen, Chang‐Hong</creatorcontrib><creatorcontrib>Shieh, Jia‐Ming</creatorcontrib><creatorcontrib>Chueh, Yu‐Lun</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chia‐Wei</au><au>Tsai, Hung‐Wei</au><au>Wang, Yi‐Chung</au><au>Shih, Yu‐Chuan</au><au>Su, Teng‐Yu</au><au>Yang, Chen‐Hua</au><au>Lin, Wei‐Sheng</au><au>Shen, Chang‐Hong</au><au>Shieh, Jia‐Ming</au><au>Chueh, Yu‐Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rear‐Passivated Ultrathin Cu(In,Ga)Se 2 Films by Al 2 O 3 Nanostructures Using Glancing Angle Deposition Toward Photovoltaic Devices with Enhanced Efficiency</atitle><jtitle>Advanced functional materials</jtitle><date>2019-11</date><risdate>2019</risdate><volume>29</volume><issue>48</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In this work, for the first time, the addition of aluminum oxide nanostructures (Al
2
O
3
NSs) grown by glancing angle deposition (GLAD) is investigated on an ultrathin Cu(In,Ga)Se
2
device (400 nm) fabricated using a sequential process, i.e., post‐selenization of the metallic precursor layer. The most striking observation to emerge from this study is the alleviation of phase separation after adding the Al
2
O
3
NSs with improved Se diffusion into the non‐uniformed metallic precursor due to the surface roughness resulting from the Al
2
O
3
NSs. In addition, the raised Na concentration at the rear surface can be attributed to the increased diffusion of Na ion facilitated by Al
2
O
3
NSs. The coverage and thickness of the Al
2
O
3
NSs significantly affects the cell performance because of an increase in shunt resistance associated with the formation of Na
2
Se
X
and phase separation. The passivation effect attributed to the Al
2
O
3
NSs is well studied using the bias‐EQE measurement and
J–V
characteristics under dark and illuminated conditions. With the optimization of the Al
2
O
3
NSs, the remarkable enhancement in the cell performance occurs, exhibiting a power conversion efficiency increase from 2.83% to 5.33%, demonstrating a promising method for improving ultrathin Cu(In,Ga)Se
2
devices, and providing significant opportunities for further applications.</abstract><doi>10.1002/adfm.201905040</doi><orcidid>https://orcid.org/0000-0002-0155-9987</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2019-11, Vol.29 (48) |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_201905040 |
source | Wiley Online Library Journals Frontfile Complete |
title | Rear‐Passivated Ultrathin Cu(In,Ga)Se 2 Films by Al 2 O 3 Nanostructures Using Glancing Angle Deposition Toward Photovoltaic Devices with Enhanced Efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rear%E2%80%90Passivated%20Ultrathin%20Cu(In,Ga)Se%202%20Films%20by%20Al%202%20O%203%20Nanostructures%20Using%20Glancing%20Angle%20Deposition%20Toward%20Photovoltaic%20Devices%20with%20Enhanced%20Efficiency&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Chia%E2%80%90Wei&rft.date=2019-11&rft.volume=29&rft.issue=48&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201905040&rft_dat=%3Ccrossref%3E10_1002_adfm_201905040%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |