Solution-Processed Metallic Nanowire Electrodes as Indium Tin Oxide Replacement for Thin-Film Solar Cells

Solution processed silver nanowire (Ag NW) films are introduced as transparent electrodes for thin‐film solar cells. Ag NW electrodes were processed by doctor blade‐coating on glass substrates at moderate temperatures (less than 100 °C). The morphological, optical, and electrical characteristics of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2011-12, Vol.21 (24), p.4784-4787
Hauptverfasser: Krantz, Johannes, Richter, Moses, Spallek, Stefanie, Spiecker, Erdmann, Brabec, Christoph J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solution processed silver nanowire (Ag NW) films are introduced as transparent electrodes for thin‐film solar cells. Ag NW electrodes were processed by doctor blade‐coating on glass substrates at moderate temperatures (less than 100 °C). The morphological, optical, and electrical characteristics of these electrodes were investigated as a function of processing parameters. For solar‐cell application, Ag NW electrodes with an average transparency of 90% between 450 and 800 nm and a sheet resistivity of ≈10 Ω per square were chosen. The performance of poly(3‐hexylthiophen‐2,5‐diyl):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) solar cells on Ag NW electrodes was found to match the performance of otherwise identical cells on indium tin oxide. Overall, P3HT:PCBM solar cells with an efficiency of 2.5% on transparent Ag NW electrodes have been realized. Solution‐processed silver nanowire (Ag NW) films are introduced as transparent electrodes for thin‐film solar cells. Ag NWs are processed by doctor blade‐coating at moderate temperatures and their morphological, optical, and electrical characteristics are presented. Additionally Ag NW electrodes are applied for a direct comparison with indium tin oxide electrode layers in poly(3‐hexylthiophen‐2,5‐diyl):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) organic solar cells with comparable performances.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201100457