Self-Organization of a Highly Integrated Silicon Nanowire Network on a Si(110)-16 × 2 Surface by Controlling Domain Growth

Here, bottom‐up nanofabrication for the two‐dimensional self‐organization of a highly integrated, well‐defined silicon nanowire (SiNW) mesh on a naturally‐patterned Si(110)–16 × 2 surface by controlling the lateral growths of two non‐orthogonal 16 × 2 domains is reported. This self‐ordered nanomesh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2009-11, Vol.19 (21), p.3389-3395
Hauptverfasser: Hong, Ie-Hong, Liao, Yen-Chieh, Yen, Shang-Chieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, bottom‐up nanofabrication for the two‐dimensional self‐organization of a highly integrated, well‐defined silicon nanowire (SiNW) mesh on a naturally‐patterned Si(110)–16 × 2 surface by controlling the lateral growths of two non‐orthogonal 16 × 2 domains is reported. This self‐ordered nanomesh consists of two crossed arrays of parallel‐aligned SiNWs with nearly identical widths of 1.8–2.5 nm and pitches of 5.0–5.9 nm, and is formed over a mesoscopic area of 300 × 270 nm2 so as to show a high integration density in excess of 104 µm−2. These crossed SiNWs exhibit semiconducting character with an equal band gap of ∼0.95 eV as well as unique quantum confinement effect. Such an ultrahigh‐density SiNW network can serve as a versatile nanotemplate for nanofabrication and nanointegration of the highly‐integrated metal‐silicide or molecular crossbar nanomesh on Si(110) surface for a broad range of device applications. Also, the multi‐layer, vertically‐stacked SiNW networks can be self‐assembled through hierarchical growth, which opens the possibility for creating three‐dimensionally interconnected crossbar circuits. The ability to self‐organize an ultrahigh‐density, functional SiNW network on a Si(110) surface represents a simple step toward the fabrication of highly‐integrated crossbar nanocircuits in a very straightforward, fast, cost‐effective, and high throughput process. An ultrahigh‐density silicon‐nanowire network is self‐organized on Si(110)–16 × 2 surface by controlling the domain growth of two non‐orthogonal 16 × 2 superstructures (see figure). This novel bottom‐up approach provides a simple and efficient nanofabrication of highly‐integrated silicon‐nanowire crossbar circuits. Such ultra‐dense silicon‐nanowire mesh can serve as a versatile nanotemplate for nanointegration of metal‐silicide or molecular crossbar nanomeshes for a broad range of device applications.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.200900974