Wet Chemical Treatment and Mg Doping of p‐InP Surfaces for Ohmic Low‐Resistive Metal Contacts

Manufacturing a low‐resistive Ohmic metal contact on p‐type InP crystals for various applications is a challenge because of the Fermi‐level pinning via surface defects and the diffusion of p‐type doping atoms in InP. Development of wet‐chemistry treatments and nanoscale control of p‐doping for InP s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced engineering materials 2023-10, Vol.25 (19), p.n/a
Hauptverfasser: Ebrahimzadeh, Masoud, Granroth, Sari, Vuori, Sami, Punkkinen, Marko, Miettinen, Mikko, Punkkinen, Risto, Kuzmin, Mikhail, Laukkanen, Pekka, Lastusaari, Mika, Kokko, Kalevi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Manufacturing a low‐resistive Ohmic metal contact on p‐type InP crystals for various applications is a challenge because of the Fermi‐level pinning via surface defects and the diffusion of p‐type doping atoms in InP. Development of wet‐chemistry treatments and nanoscale control of p‐doping for InP surfaces is crucial for decreasing the device resistivity losses and durability problems. Herein, a proper combination of HCl‐based solution immersion, which directly provides an unusual wet chemical‐induced InP(100)c(2 × 2) atomic structure, and low‐temperature Mg‐surface doping of the cleaned InP before Ni‐film deposition is demonstrated to decrease the contact resistivity of Ni/p‐InP by the factor of 10 approximately as compared to the lowest reference value without Mg. Deposition of the Mg intermediate layer on p‐InP and postheating of Mg/p‐InP at 350 °C, both performed in ultrahigh‐vacuum (UHV) chamber, lead to intermixing of Mg and InP elements according to X‐ray photoelectron spectroscopy. Introducing a small oxygen gas background (O2 ≈ 10−6 mbar) in UHV chamber during the postheating of Mg/p‐InP enhances the indium outdiffusion and provides the lowest contact resistivity. Quantum mechanical simulations indicate that the presence of InP native oxide or/and metal indium alloy at the interface increases In diffusion. A combination of HCl‐based wet chemical pretreatment and surface doping of p‐type InP with magnesium is a potential low‐temperature method to decrease the losses due to contact resistance (RC) in InP devices. Computational and experimental surface studies suggest that the presence of the interfacial InPO4 and InxNiy‐containing phases increases the In outdiffusion, which enhances the Mg doping.
ISSN:1438-1656
1527-2648
DOI:10.1002/adem.202300762