Global carbon budget 2014

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we descr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Le Quéré, Corinne, Moriarty, Roisin, Andrew, Robbie, Peters, Glen Philip, Ciais, Philippe, Friedlingstein, Pierre, Jones, Samantha D, Sitch, Stephen, Tans, Pieter, Arneth, Almut, Boden, Thomas A, Bopp, Laurent, Bozec, Yann, Canadell, Josep G, Chini, Louise P, Chevallier, Frédéric, Cosca, Cathrine E, Harris, Ian C, Hoppema, Mario, Houghton, Richard A, House, Joanna I, Jain, Atul K, Johannessen, Truls, Kato, Etsushi, Keeling, Ralph F, Kitidis, Vassilis, Klein Goldewijk, Kees, Koven, Charles D, Landa, Camilla Stegen, Landschützer, Peter, Lenton, Andrew, Lima, Ivan D, Marland, Gregg, Mathis, Jeremy T, Metzl, Nicolas, Nojiri, Yukihiro, Olsen, Are, Ono, Tsuneo, Peng, Shushi, Peters, Wouter, Pfeil, Benjamin, Poulter, Benjamin, Raupach, Michael R, Regnier, Pierre, Rödenbeck, Christian, Saito, Shu, Salisbury, Joseph E, Schuster, Ute, Schwinger, Jörg, Séférian, Roland, Segschneider, Joachim, Steinhoff, Tobias, Stocker, Benjamin D, Sutton, Adrienne J, Takahashi, Taro, Tilbrook, Bronte, van der Werf, Guido R, Viovy, Nicolas, Wang, Yingping, Wanninkhof, Rik, Wiltshire, Andrew J, Zeng, Ning
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.9 ± 0.8 GtC yr−1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr−1, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 5.4 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 2.5 ± 0.9 GtC yr−1. GATM was high in 2013, reflecting a steady increa