Swarm electrification: Harnessing surplus energy in off-grid solar home systems for universal electricity access

Achieving universal access to electricity by 2030, as set out by the Sustainable Development Goals, presents a significant challenge given the current rate of progress. A recent promising concept is swarm electrification. Its central idea is the peer-to-peer energy sharing of surplus energy in solar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fuchs, Ida, Balderrama, Sergio, Quoilin, Sylvain, Crespo del Granado, Pedro Andres, Rajasekharan, Jayaprakash
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Achieving universal access to electricity by 2030, as set out by the Sustainable Development Goals, presents a significant challenge given the current rate of progress. A recent promising concept is swarm electrification. Its central idea is the peer-to-peer energy sharing of surplus energy in solar home systems (SHSs) to connect additional neighbors and grow a bottom-up grid. This paper studies the surplus energy in SHSs and its underlying influencing factors as a basis for swarm electrification. An open-source multi-model-based techno-economic analysis of off-grid SHS including surplus energy as a value is presented. Three distinct household types from the tier 3 category in the Multi-tier framework are compared based on their unique ratios of peak-to-average demand and percentage of load consumption during sun hours. A statistical analysis of surplus energy for each household type is presented and energy sharing with additional households at tier 1–2 is simulated. Two economic analysis methods, including surplus energy, are presented and compared: single-objective cost minimization and multi-objective compromise programming. The study finds that a low ratio of demand during sun hours leads to higher surplus energy volumes, while a peak-to-average ratio alone cannot give such indications. Both economic methods suggest that optimizing the SHS design for tier 3 households involves a slight increase in solar power capacity when considering the expected revenue from selling surplus energy to 2–3 households in tiers 1–2. The total cost for the tier 3 households are reduced by , additionally to decreasing their own lost load by , and reducing the up-front cost to get electricity access for the tier 1–2 households by 50% compared to purchasing their own full SHS.