A study of inhomogeneous massless scalar gauge fields in cosmology
Why is the Universe so homogeneous and isotropic? We summarize a general study of a γ-law perfect fluid alongside an inhomogeneous, massless scalar gauge field (with homogeneous gradient) in anisotropic spaces with General Relativity. The anisotropic matter sector is implemented as a j-form (field-s...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Why is the Universe so homogeneous and isotropic? We summarize a general study of a γ-law perfect fluid alongside an inhomogeneous, massless scalar gauge field (with homogeneous gradient) in anisotropic spaces with General Relativity. The anisotropic matter sector is implemented as a j-form (field-strength level), where j ∈ {1, 3}, and the spaces studied are Bianchi space-times of solvable type. Wald’s no-hair theorem is extended to include the j-form case. We highlight three new self-similar space-times: the Edge, the Rope and Wonderland. The latter solution is so far found to exist in the physical state space of types I,II, IV, VI0, VIh, VII0 and VIIh, and is a global attractor in I and V. The stability analysis of the other types has not yet been performed. This paper is a summary of [1], with some remarks towards new results which will be further laid out in upcoming work. |
---|---|
ISSN: | 1378-1883 |