Honeycomb Plots: Visual Enhancements for Hexagonal Maps

Aggregation through binning is a commonly used technique for visualizing large, dense, and overplotted two-dimensional data sets. However, aggregation can hide nuanced data-distribution features and complicates the display of multiple data-dependent variables, since color mapping is the primary mean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Trautner, Thomas Bernhard, Sbardellati, Maximilian, Stoppel, Sergej, Bruckner, Stefan
Format: Buch
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aggregation through binning is a commonly used technique for visualizing large, dense, and overplotted two-dimensional data sets. However, aggregation can hide nuanced data-distribution features and complicates the display of multiple data-dependent variables, since color mapping is the primary means of encoding. In this paper, we present novel techniques for enhancing hexplots with spatialization cues while avoiding common disadvantages of three-dimensional visualizations. In particular, we focus on techniques relying on preattentive features that exploit shading and shape cues to emphasize relative value differences. Furthermore, we introduce a novel visual encoding that conveys information about the data distributions or trends within individual tiles. Based on multiple usage examples from different domains and real-world scenarios, we generate expressive visualizations that increase the information content of classic hexplots and validate their effectiveness in a user study.