Quick-clay landslide mitigation using potassium-chloride wells: Installation procedures and effects
Mitigation actions related to quick-clay slopes often induce undesirable changes to the terrain that may have negative impact on developed areas and local biodiversity. Soil improvement may prevent this. Lime-cement piling causes temporarily reduced slope stability and substantial climate-gas emissi...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mitigation actions related to quick-clay slopes often induce undesirable changes to the terrain that may have negative impact on developed areas and local biodiversity. Soil improvement may prevent this. Lime-cement piling causes temporarily reduced slope stability and substantial climate-gas emissions. Less climate-gas emissions are associated to the production of potassium chloride (KCl). KCl improves the post-failure properties of quick clay so it renders not quick and may serve as an alternative to current landslide-mitigation. The mechanisms in this chemical process is well documented, but there exist no installation procedures for KCl wells, nor knowledge on cost/benefit or climate-gas emissions. This paper presents two installation procedures of KCl wells, and studies showing that the climate-gas emissions are far less than installing lime-cement piles. Further development of cost-effective installation procedures is needed to justify application of KCl wells in quick-clay areas. |
---|