Study of low-temperature effect on the fracture locus of a 420-MPa structural steel with the edge tracing method

Quasi-static tensile tests with smooth round bar and axisymmetric notched tensile specimens have been performed to study the low-temperature effect on the fracture locus of a 420-MPa structural steel. Combined with a digital high-speed camera and a 2-plane mirror system, specimen deformation was rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tu, Shengwen, Ren, Xiaobo, Kristensen, Tore Andre, He, Jianying, Zhang, Zhiliang
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quasi-static tensile tests with smooth round bar and axisymmetric notched tensile specimens have been performed to study the low-temperature effect on the fracture locus of a 420-MPa structural steel. Combined with a digital high-speed camera and a 2-plane mirror system, specimen deformation was recorded in 2 orthogonal planes. Pictures taken were then analysed with the edge tracing method to calculate the minimum cross-section diameter reduction of the necked/notched specimen. Obvious temperature effect was observed on the load-strain curves for smooth and notched specimens. Both the strength and strain hardening characterized by the strain at maximum load increase with temperature decrease down to −60°C. Somewhat unexpected, the fracture strains (ductility) of both smooth and notched specimens at temperatures down to −60°C do not deteriorate, compared with those at room temperature. Combined with numerical analyses, it shows that the effect of low temperatures (down to −60°C) on fracture locus is insignificant. These findings shed new light on material selection for Arctic operation.
ISSN:1649-1661