Monitoring photolysis and (solar photo)-Fenton of enrofloxacin by a methodology involving EEM-PARAFAC and bioassays: Role of pH and water matrix
The degradation of enrofloxacin (ENR) by direct photolysis, Fenton and solar photo-Fenton processes has been studied in different water matrices, such as ultra-pure water (MQ), tap water (TW) and highly saline water (SW). Reactions have been conducted at initial pH 2.8 and 5.0. At pH = 2.8, HPLC ana...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The degradation of enrofloxacin (ENR) by direct photolysis, Fenton and solar photo-Fenton processes has been studied in different water matrices, such as ultra-pure water (MQ), tap water (TW) and highly saline water (SW). Reactions have been conducted at initial pH 2.8 and 5.0. At pH = 2.8, HPLC analyses showed a fast removal of ENR by (solar photo)-Fenton treatments in all studied water matrices, whereas a 40% removal was observed after 120 min of photolysis. However, TOC measurements showed that only solar photo-Fenton was able to produce significant mineralization (80% after 120 min of treatment); differences between ENR removal and mineralization can be attributed to the release of important amounts of reaction by-products. Excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC) were employed to gain further insight into the nature of these by-products and their time-course profile, obtaining a 5-component model. EEM-PARAFAC results indicated that photolysis is not able to produce important changes in the fluoroquinolone structure, in sharp contrast with (solar photo)-Fenton, where decrease of the components associated with fluoroquinolone core was observed. Agar diffusion tests employing E. coli and S, aureus showed that the antibiotic activity decreased in parallel with the destruction of the fluoroquinolone core. |
---|