Quarkonium measurements in nucleus–nucleus collisions with ALICE
Quarkonia, i.e. bound states of and quarks, are powerful observables to study the properties of nuclear matter under extreme conditions. The formation of a Quark-Gluon Plasma (QGP), which is predicted by lattice QCD calculations at high temperatures as reached at the LHC energies, has a strong influ...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quarkonia, i.e. bound states of and quarks, are powerful observables to study the properties of nuclear matter under extreme conditions. The formation of a Quark-Gluon Plasma (QGP), which is predicted by lattice QCD calculations at high temperatures as reached at the LHC energies, has a strong influence on the production and behavior of quarkonia. The latest ALICE results on bottomonium and charmonium production in nucleus−nucleus collisions are presented. This includes measurements of the and nuclear modification factor (RAA) at forward rapidity and the RAA and as a function of centrality, pT and rapidity in Pb–Pb collisions at . Also, first results from measurements in Xe–Xe collisions at are presented. Further on, the experimental results are compared to various calculations from theoretical models. |
---|