Well-Posedness and Convergence of a Finite Volume Method for Conservation Laws on Networks
We continue the analysis of nonlinear conservation laws on networks initiated in [M. Musch, U. S. Fjordholm, and N. H. Risebro, Netw. Heterog. Media, 17 (2022), pp. 101--128] by extending our analysis to a large class of flux functions which must be neither monotone nor convex/concave. We utilize th...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2022-04, Vol.60 (2), p.606-630 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We continue the analysis of nonlinear conservation laws on networks initiated in [M. Musch, U. S. Fjordholm, and N. H. Risebro, Netw. Heterog. Media, 17 (2022), pp. 101--128] by extending our analysis to a large class of flux functions which must be neither monotone nor convex/concave. We utilize the framework laid down in [M. Musch, U. S. Fjordholm, and N. H. Risebro, Netw. Heterog. Media, 17 (2022), pp. 101--128] and prove existence and uniqueness within a natural class of entropy solutions via the convergence of an explicit finite volume method. In particular, this leads to the existence of a semigroup of solutions. The theoretical results are supported with numerical experiments including an experimental order of convergence. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/21M145001X |