Well-Posedness and Convergence of a Finite Volume Method for Conservation Laws on Networks

We continue the analysis of nonlinear conservation laws on networks initiated in [M. Musch, U. S. Fjordholm, and N. H. Risebro, Netw. Heterog. Media, 17 (2022), pp. 101--128] by extending our analysis to a large class of flux functions which must be neither monotone nor convex/concave. We utilize th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2022-04, Vol.60 (2), p.606-630
Hauptverfasser: Fjordholm, Ulrik S., Musch, Markus, Risebro, Nils H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We continue the analysis of nonlinear conservation laws on networks initiated in [M. Musch, U. S. Fjordholm, and N. H. Risebro, Netw. Heterog. Media, 17 (2022), pp. 101--128] by extending our analysis to a large class of flux functions which must be neither monotone nor convex/concave. We utilize the framework laid down in [M. Musch, U. S. Fjordholm, and N. H. Risebro, Netw. Heterog. Media, 17 (2022), pp. 101--128] and prove existence and uniqueness within a natural class of entropy solutions via the convergence of an explicit finite volume method. In particular, this leads to the existence of a semigroup of solutions. The theoretical results are supported with numerical experiments including an experimental order of convergence.
ISSN:0036-1429
1095-7170
DOI:10.1137/21M145001X