Strong Solutions of Stochastic Differential Equations with Generalized Drift and Multidimensional Fractional Brownian Initial Noise

In this paper, we prove the existence of strong solutions to an stochastic differential equation with a generalized drift driven by a multidimensional fractional Brownian motion for small Hurst parameters H < 1 2 . Here, the generalized drift is given as the local time of the unknown solution pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2022-06, Vol.35 (2), p.714-771
Hauptverfasser: Baños, David, Ortiz-Latorre, Salvador, Pilipenko, Andrey, Proske, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove the existence of strong solutions to an stochastic differential equation with a generalized drift driven by a multidimensional fractional Brownian motion for small Hurst parameters H < 1 2 . Here, the generalized drift is given as the local time of the unknown solution process, which can be considered an extension of the concept of a skew Brownian motion to the case of fractional Brownian motion. Our approach for the construction of strong solutions is new and relies on techniques from Malliavin calculus combined with a “local time variational calculus” argument.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-021-01084-7