A 23 m.y. record of low atmospheric CO2

Current atmospheric CO2 concentration is known to be higher than it has been during the past ∼800 k.y. of Earth history, based on direct measurement of CO2 within ice cores. A comparison to the more ancient past is complicated by a deficit of CO2 proxies that may be applied across very long spans of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geology (Boulder) 2020-09, Vol.48 (9), p.888-892
Hauptverfasser: Cui, Ying, Schubert, Brian A, Jahren, A. Hope
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current atmospheric CO2 concentration is known to be higher than it has been during the past ∼800 k.y. of Earth history, based on direct measurement of CO2 within ice cores. A comparison to the more ancient past is complicated by a deficit of CO2 proxies that may be applied across very long spans of geologic time. Here, we present a new CO2 record across the past 23 m.y. of Earth history based on the δ13C value of terrestrial C3 plant remains, using a method applicable to the entire ∼400 m.y. history of C3 photosynthesis on land. Across the past 23 m.y., CO2 likely ranged between ∼230 ppmv and 350 ppmv (68% confidence interval: ∼170-540 ppm). CO2 was found to be highest during the early and middle Miocene and likely below present-day levels during the middle Pliocene (84th percentile: ∼400 ppmv). These data suggest present-day CO2 (412 ppmv) exceeds the highest levels that Earth experienced at least since the Miocene, further highlighting the present-day disruption of long-established CO2 trends within Earth's atmosphere.
ISSN:0091-7613
1943-2682
DOI:10.1130/G47681.1