Fluorinated Precursor Compounds in Sediments as a Source of Perfluorinated Alkyl Acids (PFAA) to Biota
The environmental behavior of perfluorinated alkyl acids (PFAA) and their precursors was investigated in lake Tyrifjorden, downstream a factory producing paper products coated with per- and polyfluorinated alkyl substances (PFAS). Low water concentrations (max 0.18 ng L–1 linear perfluorooctanesulfo...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2020-10, Vol.54 (20), p.13077-13089 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The environmental behavior of perfluorinated alkyl acids (PFAA) and their precursors was investigated in lake Tyrifjorden, downstream a factory producing paper products coated with per- and polyfluorinated alkyl substances (PFAS). Low water concentrations (max 0.18 ng L–1 linear perfluorooctanesulfonic acid, L-PFOS) compared to biota (mean 149 μg kg–1 L-PFOS in perch livers) resulted in high bioaccumulation factors (L-PFOS BAFPerch liver: 8.05 × 105–5.14 × 106). Sediment concentrations were high, particularly for the PFOS precursor SAmPAP diester (max 1 872 μg kg–1). Biota-sediment accumulation factors (L-PFOS BSAFPerch liver: 22–559) were comparable to elsewhere, and concentrations of PFAA precursors and long chained PFAA in biota were positively correlated to the ratio of carbon isotopes (13C/12C), indicating positive correlations to dietary intake of benthic organisms. The sum fluorine from targeted analyses accounted for 54% of the extractable organic fluorine in sediment, and 9–108% in biota. This, and high trophic magnification factors (TMF, 3.7–9.3 for L-PFOS), suggests that hydrophobic precursors in sediments undergo transformation and are a main source of PFAA accumulation in top predator fish. Due to the combination of water exchange and dilution, transformation of larger hydrophobic precursors in sediments can be a source to PFAA, some of which are normally associated with uptake from water. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.0c04587 |