Poincaré–Friedrichs inequalities of complexes of discrete distributional differential forms

We derive bounds for the constants in Poincaré–Friedrichs inequalities with respect to mesh-dependent norms for complexes of discrete distributional differential forms. A key tool is a generalized flux reconstruction which is of independent interest. The results apply to piecewise polynomial de Rham...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT 2020-06, Vol.60 (2), p.345-371
Hauptverfasser: Christiansen, Snorre H., Licht, Martin W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive bounds for the constants in Poincaré–Friedrichs inequalities with respect to mesh-dependent norms for complexes of discrete distributional differential forms. A key tool is a generalized flux reconstruction which is of independent interest. The results apply to piecewise polynomial de Rham sequences on bounded domains with mixed boundary conditions.
ISSN:0006-3835
1572-9125
DOI:10.1007/s10543-019-00784-1