Plasticity in algal stoichiometry: Experimental evidence of a temperature-induced shift in optimal supply N:P ratio
There is growing empirical and theoretical evidence for a positive relationship between the nitrogen (N)-to-phosphorus (P) ratio of phytoplankton and temperature. However, few have tested how the optimal supply N:P ratio; the dissolved N:P ratio at which nutrient limitation switches from one element...
Gespeichert in:
Veröffentlicht in: | Limnology and oceanography 2017-07, Vol.62 (4), p.1346-1354 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is growing empirical and theoretical evidence for a positive relationship between the nitrogen (N)-to-phosphorus (P) ratio of phytoplankton and temperature. However, few have tested how the optimal supply N:P ratio; the dissolved N:P ratio at which nutrient limitation switches from one element to the other, responds to temperature. In this study, we conducted a factorial experiment crossing 12 temperature levels with 8 supply N:P ratios to determine the effect of temperature acclimation on the optimal supply N:P ratio of the microalgae Chlamydomonas reinhardtii. We found that the optimal supply N:P increased in a sigmoidal manner from 26.5 to 36.5 (atomic ratio) over a temperature gradient spanning from ∼10 to 18°C, with the steepest change around 15°C. This result is in accordance with trends observed for cellular and seston N:P ratios, and indicates that phytoplankton populations may be shifted toward N-limitation in a scenario of warmer waters. |
---|---|
ISSN: | 0024-3590 1939-5590 |
DOI: | 10.1002/lno.10500 |