North‐south asymmetries in cold plasma density in the magnetotail lobes: Cluster observations

In this paper, we present observations of cold (0–70 eV) plasma density in the magnetotail lobes. The observations and results are based on 16 years of Cluster observation of spacecraft potential measurements converted into local plasma densities. Measurements from all four Cluster spacecraft have b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2017-01, Vol.122 (1), p.136-149
Hauptverfasser: Haaland, S., Lybekk, B., Maes, L., Laundal, K., Pedersen, A., Tenfjord, P., Ohma, A., Østgaard, N., Reistad, J., Snekvik, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present observations of cold (0–70 eV) plasma density in the magnetotail lobes. The observations and results are based on 16 years of Cluster observation of spacecraft potential measurements converted into local plasma densities. Measurements from all four Cluster spacecraft have been used, and the survey indicates a persistent asymmetry in lobe density, with consistently higher cold plasma densities in the northern lobe. External influences, such as daily and seasonal variations in the Earth's tilt angle, can introduce temporary north‐south asymmetries through asymmetric ionization of the two hemispheres. Likewise, external drivers, such as the orientation of the interplanetary magnetic field can set up additional spatial asymmetries in outflow and lobe filling. The persistent asymmetry reported in this paper is also influenced by these external factors but is mainly caused by differences in magnetic field configuration in the Northern and Southern Hemisphere ionospheres. Key Points A comprehensive study of the plasma density in the magnetotail lobes is presented The lobe density is asymmetric; the density is higher in the northern lobe North‐south differences in ion outflow are the most probable explanation for the asymmetry
ISSN:2169-9380
2169-9402
DOI:10.1002/2016JA023404