Modeling 237 Lyman-α spectra of the MUSE-Wide survey

We compare 237 Lyman-α (Lyα) spectra of the MUSE-Wide survey to a suite of radiative transfer simulations consisting of a central luminous source within a concentric, moving shell of neutral gas, and dust. This six parameter shell-model has been used numerously in previous studies, however, on signi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2017-12, Vol.608, p.A139
1. Verfasser: Gronke, Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compare 237 Lyman-α (Lyα) spectra of the MUSE-Wide survey to a suite of radiative transfer simulations consisting of a central luminous source within a concentric, moving shell of neutral gas, and dust. This six parameter shell-model has been used numerously in previous studies, however, on significantly smaller data-sets. We find that the shell-model can reproduce the observed spectral shape very well – better than the also common “Gaussian-minus-Gaussian” model which we also fitted to the dataset. Specifically, we find that ~ 94% of the fits possess a goodness-of-fit value of p(χ2) > 0.1. The large number of spectra allows us to robustly characterize the shell-model parameter range, and consequently, the spectral shapes typical for realistic spectra. We find that the vast majority of the Lyα spectral shapes require an outflow and only ~ 5% are well-fitted through an inflowing shell. In addition, we find ~ 46% of the spectra to be consistent with a neutral hydrogen column density < 1017 cm-2 – suggestive of a non-negligible fraction of continuum leakers in the MUSE-Wide sample. Furthermore, we correlate the spectral against the Lyα halo properties against each other but do not find any strong correlation.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/201731791