Halo velocity profiles in screened modified gravity theories
Screened modified gravity predicts potentially large signatures in the peculiar velocity field that makes it an interesting probe to test gravity on cosmological scales. We investigate the signatures induced by the Symmetron and a Chameleon f(R) model in the peculiar velocity field using N-body simu...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2015-05, Vol.449 (3), p.2837-2837 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Screened modified gravity predicts potentially large signatures in the peculiar velocity field that makes it an interesting probe to test gravity on cosmological scales. We investigate the signatures induced by the Symmetron and a Chameleon f(R) model in the peculiar velocity field using N-body simulations. By studying fifth force and halo velocity profiles, we identify three general categories of effects found in screened modified gravity models: a fully screened regime where we recover ... cold dark matter to high precision, an unscreened regime where the fifth force is in full operation, and, a partially screened regime where screening occurs in the inner part of a halo, but the fifth force is active at larger radii. These three regimes can be pointed out very clearly by analysing the deviation in the maximum cluster velocity. Observationally, the partially screened regime is of particular interest since an uniform increase of the gravitational force -- as present in the unscreened regime -- is degenerate with the (dynamical) halo mass estimate, and, thus, hard to detect. (ProQuest: ... denotes formulae/symbols omitted.) |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stv496 |