Two-complete stable motivic stems over finite fields

Let ℓ be a prime and q=pν, where p is a prime different from ℓ. We show that the ℓ–completion of the nth stable homotopy group of spheres is a summand of the ℓ–completion of the (n,0) motivic stable homotopy group of spheres over the finite field with q elements, Fq. With this, and assisted by compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebraic & geometric topology 2017-03, Vol.17 (2), p.1059-1104
Hauptverfasser: Wilson, Glen Matthew, Østvær, Paul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ℓ be a prime and q=pν, where p is a prime different from ℓ. We show that the ℓ–completion of the nth stable homotopy group of spheres is a summand of the ℓ–completion of the (n,0) motivic stable homotopy group of spheres over the finite field with q elements, Fq. With this, and assisted by computer calculations, we are able to explicitly compute the two-complete stable motivic stems πn,0(Fq)∧2 for 0≤n≤18 for all finite fields and π19,0(Fq)∧2 and π20,0(Fq)∧2 when q≡1mod4 assuming Morel’s connectivity theorem for Fq holds.
ISSN:1472-2747
1472-2739
DOI:10.2140/agt.2017.17.1059