Antibiotic delivery by liposomes from prokaryotic microorganisms: Similia cum similis works better

[Display omitted] To date the effectiveness of antibiotics is undermined by microbial resistance, threatening public health worldwide. Enhancing the efficacy of the current antibiotic arsenal is an alternative strategy. The administration of antimicrobials encapsulated in nanocarriers, such as lipos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmaceutics and biopharmaceutics 2015-08, Vol.94, p.411-418
Hauptverfasser: Colzi, Ilaria, Troyan, Anna N., Perito, Brunella, Casalone, Enrico, Romoli, Riccardo, Pieraccini, Giuseppe, Škalko-Basnet, Nataša, Adessi, Alessandra, Rossi, Federico, Gonnelli, Cristina, Ristori, Sandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] To date the effectiveness of antibiotics is undermined by microbial resistance, threatening public health worldwide. Enhancing the efficacy of the current antibiotic arsenal is an alternative strategy. The administration of antimicrobials encapsulated in nanocarriers, such as liposomes, is considered a viable option, though with some drawbacks related to limited affinity between conventional liposomes and bacterial membranes. Here we propose a novel “top-down” procedure to prepare unconventional liposomes from the membranes of prokaryotes (PD-liposomes). These vectors, being obtained from bacteria with limited growth requirements, also represent low-cost systems for scalable biotechnology production. In depth physico-chemical characterization, carried out with dynamic light scattering (DLS) and Small Angle X-ray Scattering (SAXS), indicated that PD-liposomes can be suitable for the employment as antibiotic vectors. Specifically, DLS showed that the mean diameter of loaded liposomes was ∼200–300nm, while SAXS showed that the structure was similar to conventional liposomes, thus allowing a direct comparison with more standard liposomal formulations. Compared to free penicillin G, PD-liposomes loaded with penicillin G showed minimal inhibitory concentrations against E. coli that were up to 16-times lower. Noteworthy, the extent of the bacterial growth inhibition was found to depend on the microorganisms from which liposomes were derived.
ISSN:0939-6411
1873-3441
DOI:10.1016/j.ejpb.2015.06.013