Modeling iron abundance anhancements in the slow solar wind
We have studied the behavior of Fe ions in the slow solar wind, using a fluid model extending from the chromosphere to 1 AU. Emphasis is on elemental "pileup" in the corona, i.e., a region where the Fe density increases and has a local maximum. We study the behavior of individual Fe ions r...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2011 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have studied the behavior of Fe ions in the slow solar wind, using a fluid model extending from the chromosphere to 1 AU. Emphasis is on elemental "pileup" in the corona, i.e., a region where the Fe density increases and has a local maximum. We study the behavior of individual Fe ions relative to each other in the pileup region, where Fe(+10) and Fe(+12) have been used as examples. We find that elemental pileups can occur for a variety of densities and temperatures in the corona. We also calculate the ion fractions and obtain estimates for the freezing-in distance of Fe in the slow solar wind. We find that the freezing-in distance for iron is high, between 3 and 11 R(circle dot), and that a high outflow velocity, of order 50-100 km s(-1), in the region above the temperature maximum is needed to obtain ion fractions for Fe(+10) and Fe(+12) that are consistent with observations. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1088/0004-637X/732/2/119 |