A two-component nonlinear variational wave system
We derive a novel two-component generalization of the nonlinear variational wave equation as a model for the director field of a nematic liquid crystal with a variable order parameter. The equation admits classical solutions locally in time. We prove that a special semilinear case is globally well-p...
Gespeichert in:
Veröffentlicht in: | Journal of hyperbolic differential equations 2023-09, Vol.20 (3), p.603-627 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive a novel two-component generalization of the nonlinear variational wave equation as a model for the director field of a nematic liquid crystal with a variable order parameter. The equation admits classical solutions locally in time. We prove that a special semilinear case is globally well-posed. We show that a particular long time asymptotic expansion around a constant state in a moving frame satisfies the two-component Hunter–Saxton system. |
---|---|
ISSN: | 0219-8916 1793-6993 |
DOI: | 10.1142/S0219891623500182 |