Mechanistic insights into carbamate formation from CO2 and amines: the role of guanidine–CO2 adducts
Capture of CO2 by amines is an attractive synthetic strategy for the formation of carbamates. Such reactions can be mediated by superbases, such as 1,1,3,3-tetramethylguanidine (TMG), with previous implications that zwitterionic superbase–CO2 adducts are able to actively transfer the carboxylate gro...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2021-01, Vol.11 (20), p.6877-6886 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6886 |
---|---|
container_issue | 20 |
container_start_page | 6877 |
container_title | Catalysis science & technology |
container_volume | 11 |
creator | Mannisto, Jere K Pavlovic, Ljiljana Tiainen, Tony Nieger, Martin Sahari, Aleksi Hopmann, Kathrin H Repo, Timo |
description | Capture of CO2 by amines is an attractive synthetic strategy for the formation of carbamates. Such reactions can be mediated by superbases, such as 1,1,3,3-tetramethylguanidine (TMG), with previous implications that zwitterionic superbase–CO2 adducts are able to actively transfer the carboxylate group to various substrates. Here we report a detailed investigation of zwitterionic TMG–CO2, including isolation, NMR behavior, reactivity, and mechanistic consequences in carboxylation of aniline-derivatives. Our computational and experimental mechanistic analysis shows that the reversible TMG–CO2 zwitterion is not a direct carboxylation agent. Instead, CO2 dissociates from TMG–CO2 before a concerted carboxylation occurs, where the role of the TMG is to deprotonate the amine as it is attacking a free CO2. This insight is significant, as it opens a rational way to design new synthesis strategies. As shown here, nucleophiles otherwise inert towards CO2 can be carboxylated, even without a CO2 atmosphere, using TMG–CO2 as a stoichiometric source of CO2. We also show that natural abundance 15N NMR is sensitive for zwitterion formation, complementing variable-temperature NMR studies. |
doi_str_mv | 10.1039/d1cy01433a |
format | Article |
fullrecord | <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_23224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582696336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-df9de6b4f6dd4c52d9eaae470a2b025b7bc94443c1a47e4964f503d60a049643</originalsourceid><addsrcrecordid>eNo9j8tOwzAQRS0EElXphh_AEuuAHxOnYYcqXlJRN91HEz_aVK0NtrNgxz_wh3wJCUXM5t4ZHV3dIeSSsxvOZH1ruP5gHKTEEzIRDKCASvHTf1_KczJLaceGgZqzuZgQ92r1Fn2Xcqdp51O32eY0mByoxtjiAbOlLsRBu-Cpi-FAFytB0RuKh87bdEfz1tIY9pYGRzf9EGaG-_fn1y9nTK9zuiBnDvfJzv50StaPD-vFc7FcPb0s7peF5pXMhXG1saoFp4wBXQpTW0QLFUPRMlG2VatrAJCaI1QWagWuZNIohmxc5JRcHWN1HD_yjQ8RG86YrBohhRiJ6yPxFsN7b1NudqGPfujUiHIuVK2kVPIHeNhjDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582696336</pqid></control><display><type>article</type><title>Mechanistic insights into carbamate formation from CO2 and amines: the role of guanidine–CO2 adducts</title><source>NORA - Norwegian Open Research Archives</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Mannisto, Jere K ; Pavlovic, Ljiljana ; Tiainen, Tony ; Nieger, Martin ; Sahari, Aleksi ; Hopmann, Kathrin H ; Repo, Timo</creator><creatorcontrib>Mannisto, Jere K ; Pavlovic, Ljiljana ; Tiainen, Tony ; Nieger, Martin ; Sahari, Aleksi ; Hopmann, Kathrin H ; Repo, Timo</creatorcontrib><description>Capture of CO2 by amines is an attractive synthetic strategy for the formation of carbamates. Such reactions can be mediated by superbases, such as 1,1,3,3-tetramethylguanidine (TMG), with previous implications that zwitterionic superbase–CO2 adducts are able to actively transfer the carboxylate group to various substrates. Here we report a detailed investigation of zwitterionic TMG–CO2, including isolation, NMR behavior, reactivity, and mechanistic consequences in carboxylation of aniline-derivatives. Our computational and experimental mechanistic analysis shows that the reversible TMG–CO2 zwitterion is not a direct carboxylation agent. Instead, CO2 dissociates from TMG–CO2 before a concerted carboxylation occurs, where the role of the TMG is to deprotonate the amine as it is attacking a free CO2. This insight is significant, as it opens a rational way to design new synthesis strategies. As shown here, nucleophiles otherwise inert towards CO2 can be carboxylated, even without a CO2 atmosphere, using TMG–CO2 as a stoichiometric source of CO2. We also show that natural abundance 15N NMR is sensitive for zwitterion formation, complementing variable-temperature NMR studies.</description><identifier>ISSN: 2044-4753</identifier><identifier>ISSN: 2044-4761</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d1cy01433a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adducts ; Amines ; Aniline ; Carbamates (tradename) ; Carbon dioxide ; Carboxylation ; NMR ; Nuclear magnetic resonance ; Nucleophiles ; Substrates ; Zwitterions</subject><ispartof>Catalysis science & technology, 2021-01, Vol.11 (20), p.6877-6886</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,26566,27923,27924</link.rule.ids></links><search><creatorcontrib>Mannisto, Jere K</creatorcontrib><creatorcontrib>Pavlovic, Ljiljana</creatorcontrib><creatorcontrib>Tiainen, Tony</creatorcontrib><creatorcontrib>Nieger, Martin</creatorcontrib><creatorcontrib>Sahari, Aleksi</creatorcontrib><creatorcontrib>Hopmann, Kathrin H</creatorcontrib><creatorcontrib>Repo, Timo</creatorcontrib><title>Mechanistic insights into carbamate formation from CO2 and amines: the role of guanidine–CO2 adducts</title><title>Catalysis science & technology</title><description>Capture of CO2 by amines is an attractive synthetic strategy for the formation of carbamates. Such reactions can be mediated by superbases, such as 1,1,3,3-tetramethylguanidine (TMG), with previous implications that zwitterionic superbase–CO2 adducts are able to actively transfer the carboxylate group to various substrates. Here we report a detailed investigation of zwitterionic TMG–CO2, including isolation, NMR behavior, reactivity, and mechanistic consequences in carboxylation of aniline-derivatives. Our computational and experimental mechanistic analysis shows that the reversible TMG–CO2 zwitterion is not a direct carboxylation agent. Instead, CO2 dissociates from TMG–CO2 before a concerted carboxylation occurs, where the role of the TMG is to deprotonate the amine as it is attacking a free CO2. This insight is significant, as it opens a rational way to design new synthesis strategies. As shown here, nucleophiles otherwise inert towards CO2 can be carboxylated, even without a CO2 atmosphere, using TMG–CO2 as a stoichiometric source of CO2. We also show that natural abundance 15N NMR is sensitive for zwitterion formation, complementing variable-temperature NMR studies.</description><subject>Adducts</subject><subject>Amines</subject><subject>Aniline</subject><subject>Carbamates (tradename)</subject><subject>Carbon dioxide</subject><subject>Carboxylation</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nucleophiles</subject><subject>Substrates</subject><subject>Zwitterions</subject><issn>2044-4753</issn><issn>2044-4761</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNo9j8tOwzAQRS0EElXphh_AEuuAHxOnYYcqXlJRN91HEz_aVK0NtrNgxz_wh3wJCUXM5t4ZHV3dIeSSsxvOZH1ruP5gHKTEEzIRDKCASvHTf1_KczJLaceGgZqzuZgQ92r1Fn2Xcqdp51O32eY0mByoxtjiAbOlLsRBu-Cpi-FAFytB0RuKh87bdEfz1tIY9pYGRzf9EGaG-_fn1y9nTK9zuiBnDvfJzv50StaPD-vFc7FcPb0s7peF5pXMhXG1saoFp4wBXQpTW0QLFUPRMlG2VatrAJCaI1QWagWuZNIohmxc5JRcHWN1HD_yjQ8RG86YrBohhRiJ6yPxFsN7b1NudqGPfujUiHIuVK2kVPIHeNhjDg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Mannisto, Jere K</creator><creator>Pavlovic, Ljiljana</creator><creator>Tiainen, Tony</creator><creator>Nieger, Martin</creator><creator>Sahari, Aleksi</creator><creator>Hopmann, Kathrin H</creator><creator>Repo, Timo</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>3HK</scope></search><sort><creationdate>20210101</creationdate><title>Mechanistic insights into carbamate formation from CO2 and amines: the role of guanidine–CO2 adducts</title><author>Mannisto, Jere K ; Pavlovic, Ljiljana ; Tiainen, Tony ; Nieger, Martin ; Sahari, Aleksi ; Hopmann, Kathrin H ; Repo, Timo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-df9de6b4f6dd4c52d9eaae470a2b025b7bc94443c1a47e4964f503d60a049643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adducts</topic><topic>Amines</topic><topic>Aniline</topic><topic>Carbamates (tradename)</topic><topic>Carbon dioxide</topic><topic>Carboxylation</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nucleophiles</topic><topic>Substrates</topic><topic>Zwitterions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mannisto, Jere K</creatorcontrib><creatorcontrib>Pavlovic, Ljiljana</creatorcontrib><creatorcontrib>Tiainen, Tony</creatorcontrib><creatorcontrib>Nieger, Martin</creatorcontrib><creatorcontrib>Sahari, Aleksi</creatorcontrib><creatorcontrib>Hopmann, Kathrin H</creatorcontrib><creatorcontrib>Repo, Timo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Catalysis science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mannisto, Jere K</au><au>Pavlovic, Ljiljana</au><au>Tiainen, Tony</au><au>Nieger, Martin</au><au>Sahari, Aleksi</au><au>Hopmann, Kathrin H</au><au>Repo, Timo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic insights into carbamate formation from CO2 and amines: the role of guanidine–CO2 adducts</atitle><jtitle>Catalysis science & technology</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>20</issue><spage>6877</spage><epage>6886</epage><pages>6877-6886</pages><issn>2044-4753</issn><issn>2044-4761</issn><eissn>2044-4761</eissn><abstract>Capture of CO2 by amines is an attractive synthetic strategy for the formation of carbamates. Such reactions can be mediated by superbases, such as 1,1,3,3-tetramethylguanidine (TMG), with previous implications that zwitterionic superbase–CO2 adducts are able to actively transfer the carboxylate group to various substrates. Here we report a detailed investigation of zwitterionic TMG–CO2, including isolation, NMR behavior, reactivity, and mechanistic consequences in carboxylation of aniline-derivatives. Our computational and experimental mechanistic analysis shows that the reversible TMG–CO2 zwitterion is not a direct carboxylation agent. Instead, CO2 dissociates from TMG–CO2 before a concerted carboxylation occurs, where the role of the TMG is to deprotonate the amine as it is attacking a free CO2. This insight is significant, as it opens a rational way to design new synthesis strategies. As shown here, nucleophiles otherwise inert towards CO2 can be carboxylated, even without a CO2 atmosphere, using TMG–CO2 as a stoichiometric source of CO2. We also show that natural abundance 15N NMR is sensitive for zwitterion formation, complementing variable-temperature NMR studies.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1cy01433a</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2044-4753 |
ispartof | Catalysis science & technology, 2021-01, Vol.11 (20), p.6877-6886 |
issn | 2044-4753 2044-4761 2044-4761 |
language | eng |
recordid | cdi_cristin_nora_10037_23224 |
source | NORA - Norwegian Open Research Archives; Royal Society Of Chemistry Journals 2008- |
subjects | Adducts Amines Aniline Carbamates (tradename) Carbon dioxide Carboxylation NMR Nuclear magnetic resonance Nucleophiles Substrates Zwitterions |
title | Mechanistic insights into carbamate formation from CO2 and amines: the role of guanidine–CO2 adducts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20insights%20into%20carbamate%20formation%20from%20CO2%20and%20amines:%20the%20role%20of%20guanidine%E2%80%93CO2%20adducts&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Mannisto,%20Jere%20K&rft.date=2021-01-01&rft.volume=11&rft.issue=20&rft.spage=6877&rft.epage=6886&rft.pages=6877-6886&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d1cy01433a&rft_dat=%3Cproquest_crist%3E2582696336%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582696336&rft_id=info:pmid/&rfr_iscdi=true |