Putative fossils of chemotrophic microbes preserved in seep carbonates from Vestnesa Ridge, off northwest Svalbard, Norway
The microbial key players at methane seeps are methanotrophic archaea and sulfate-reducing bacteria. They form spherical aggregates and jointly mediate the sulfate-dependent anaerobic oxidation of methane (SD-AOM: CH4 + SO42- → HCO3- + HS- + H2O), thereby inducing the precipitation of authigenic see...
Gespeichert in:
Veröffentlicht in: | Geology (Boulder) 2022-02, Vol.50 (2), p.169-173 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The microbial key players at methane seeps are methanotrophic archaea and sulfate-reducing bacteria. They form spherical aggregates and jointly mediate the sulfate-dependent anaerobic oxidation of methane (SD-AOM: CH4 + SO42- → HCO3- + HS- + H2O), thereby inducing the precipitation of authigenic seep carbonates. While seep carbonates constitute valuable archives for molecular fossils of SD-AOM-mediating microbes, no microfossils have been identified as AOM aggregates to date. We report clustered spherical microstructures engulfed in 13C-depleted aragonite cement (δ13C values as low as -33 ppm) of Pleistocene seep carbonates. The clusters comprise Mg-calcite spheres between ∼5 µm (single spheres) and ∼30 µm (clusters) in diameter. Scanning and transmission electron microscopy revealed a porous nanocrystalline fabric in the core area of the spheres surrounded by one or two concentric layers of Mg-calcite crystals. In situ measured sphere δ13C values as low as -42 ppm indicate that methane-derived carbon is the dominant carbon source. The size and concentric layering of the spheres resembles mineralized aggregates of natural anaerobic methanotrophic archaea (ANME) of the ANME-2 group surrounded by one or two layers of sulfate-reducing bacteria. Abundant carbonate-bound 13C-depleted lipid biomarkers of archaea and bacteria indicative of the ANME-2-Desulfosarcina/Desulfococcus consortium agree with SD-AOM-mediating microbes as critical agents of carbonate precipitation. Given the morphological resemblance, in concert with negative in situ δ13C values and abundant SD-AOM-diagnostic biomarkers, the clustered spheres likely represent fossils of SD-AOM-mediating microbes. |
---|---|
ISSN: | 0091-7613 1943-2682 1943-2682 |
DOI: | 10.1130/G49620.1 |