Dynamics of a self-propelled particle under different driving modes in a channel flow
In this paper, a model that combines the lattice Boltzmann method with the singularity distribution method is proposed to simulate a self-propelled particle swimming(exhibiting translation and rotation) in a channel flow. The results show that the velocity distribution for a self-propelled particle...
Gespeichert in:
Veröffentlicht in: | 中国物理B:英文版 2017 (1), p.264-270 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a model that combines the lattice Boltzmann method with the singularity distribution method is proposed to simulate a self-propelled particle swimming(exhibiting translation and rotation) in a channel flow. The results show that the velocity distribution for a self-propelled particle swimming deviates from a Maxwellian distribution and exhibits highvelocity tails. The influence of an eccentric potential doublet on the translation velocity of the particle is significant. The velocity decay process can be described using a double exponential model form. No large differences in the velocity distribution were observed for different translation Reynolds numbers, rotation Reynolds numbers, or regular intervals. |
---|---|
ISSN: | 1674-1056 2058-3834 |