Novel scaling law for estimating propeller tip vortex cavitation noise from model experiment
The tip vortex cavitation(TVC) noise of marine propellers is of interest due to the environmental impacts from commercial ships as well as for the survivability of naval ships. Due to complicated flow and noise field around a marine propeller, a theoretical approach to the estimation of TVC noise is...
Gespeichert in:
Veröffentlicht in: | 水动力学研究与进展:英文版 2017 (6), p.962-971 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The tip vortex cavitation(TVC) noise of marine propellers is of interest due to the environmental impacts from commercial ships as well as for the survivability of naval ships. Due to complicated flow and noise field around a marine propeller, a theoretical approach to the estimation of TVC noise is practically unrealizable. Thus, estimation of prototype TVC noise level is realized through extrapolation of the model TVC noise level measured in a cavitation tunnel. In this study, for the prediction of prototype TVC noise level from a model test, a novel scaling law reflecting the physical basis of TVC is derived from the Rayleigh-Plesset equation, the Rankine vortex model, the lifting surface theory, and other physical assumptions. Model and prototype noise data were provided by Samsung Heavy Industries(SHI) for verification. In applying the novel scaling law, similitude of the spectra of nuclei is applied to assume the same nuclei distribution in the tip vortex line of the model and the prototype. It was found that the prototype TVC noise level predicted by the novel scaling law has better agreement with the prototype TVC noise measurement than the prototype TVC noise level predicted by the modified ITTC noise estimation rule. |
---|---|
ISSN: | 1001-6058 |