A new three-dimensional finite-volume non-hydrostatic shock-capturing model for free surface flow
In this paper a new finite-volume non-hydrostatic and shock-capturing three-dimensional model for the simulation of wave-structure interaction and hydrodynamic phenomena(wave refraction, diffraction, shoaling and breaking) is proposed. The model is based on an integral formulation of the Navier-Stok...
Gespeichert in:
Veröffentlicht in: | 水动力学研究与进展:英文版 2017 (4), p.552-566 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper a new finite-volume non-hydrostatic and shock-capturing three-dimensional model for the simulation of wave-structure interaction and hydrodynamic phenomena(wave refraction, diffraction, shoaling and breaking) is proposed. The model is based on an integral formulation of the Navier-Stokes equations which are solved on a time dependent coordinate system: a coordinate transformation maps the varying coordinates in the physical domain to a uniform transformed space. The equations of motion are discretized by means of a finite-volume shock-capturing numerical procedure based on high order WENO reconstructions. The solution procedure for the equations of motion uses a third order accurate Runge-Kutta(SSPRK) fractional-step method and applies a pressure corrector formulation in order to obtain a divergence-free velocity field at each stage. The proposed model is validated against several benchmark test cases. |
---|---|
ISSN: | 1001-6058 |