New methods for calculating bare soil land surface temperature over mountainous terrain

Land surface temperature(LST) causes the phase change of water, links to the partitioning of surface water and energy budget, and becomes an important parameter to hydrology, meteorology, ecohydrology, and other researches in the high mountain cold regions. Unlike air temperature, which has common a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:山地科学学报:英文版 2017 (12), p.2471-2483
1. Verfasser: YANG Yong CHEN Ren-sheng SONG Yao-xuan LIU Jun-feng HAN Chun-tan LIU Zhang-wen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Land surface temperature(LST) causes the phase change of water, links to the partitioning of surface water and energy budget, and becomes an important parameter to hydrology, meteorology, ecohydrology, and other researches in the high mountain cold regions. Unlike air temperature, which has common altitudinal lapse rates in the mountainous regions, the influence of terrain leads to complicated estimation for soil LST. This study presents two methods that use air temperature and solar position,to estimate bare LST with high temporal resolution over horizontal sites and mountainous terrain with a random slope azimuth. The data from three horizontal meteorological stations and fourteen LST observation fields with different aspects and slopes were used to test the proposed LST methods. The calculated and measured LST were compared in a range of statistical analysis, and the analysis showed that the average RMSE(root mean square error),MAD(mean absolute deviation), and R~2(correlation coefficient) for three horizontal sites were 5.09℃,3.66℃, 0.92, and 5.03℃, 3.52℃, 0.85 for the fourteen complex terrain sites. The proposed methods showed acceptable accuracy, provide a simple way to estimate LST, and will be helpful for simulating the water and energy cycles in alpine mountainous terrain.
ISSN:1672-6316
1993-0321