GEOMETRICAL AND TOPOLOGICAL OBSTRUCTIONS OF MINIMAL HYPERSURFACES IN S~5(1)
<正> In this report, we obtain a topological obstruction for a 4-dimensional manifold to be a minimal hypersurface in S~5(1), i. e. if M~4→S~5(1) is minimal, then its signature is zero and |w~|=|W~-| holds everywhere, here W~+ and W~- are the self-dual and anti-self-dual parts of the We...
Gespeichert in:
Veröffentlicht in: | 科学通报:英文版 1988 (17), p.1409-1413 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | <正> In this report, we obtain a topological obstruction for a 4-dimensional manifold to be a minimal hypersurface in S~5(1), i. e. if M~4→S~5(1) is minimal, then its signature is zero and |w~|=|W~-| holds everywhere, here W~+ and W~- are the self-dual and anti-self-dual parts of the Weyl tensor of M, respectively. We also |
---|---|
ISSN: | 2095-9273 |