AN EXTENSION OF T. A. BURTON’S THEOREM
<正> where F:R~+ × C_n~H × C_m~H→ R~n, G:R~+ × C_n~H × C_m~H→ R~m continuous with F(t,0, 0)=0 and G(t,0,0)=0. The present paper shows that in Theorem 1 of [1] the condition of negative definiteness of the derivative of Liapunov functions along the solutions of (1) in state variables (x,...
Gespeichert in:
Veröffentlicht in: | 科学通报:英文版 1987 (4), p.226-227 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | <正> where F:R~+ × C_n~H × C_m~H→ R~n, G:R~+ × C_n~H × C_m~H→ R~m continuous with F(t,0, 0)=0 and G(t,0,0)=0. The present paper shows that in Theorem 1 of [1] the condition of negative definiteness of the derivative of Liapunov functions along the solutions of (1) in state variables (x, y) can be weakened by the condition of negative definiteness in partial state variable y. |
---|---|
ISSN: | 2095-9273 |