基于改进在线核极限学习机的蓄电池SOC预测
为对蓄电池荷电状态(SOC)进行准确、快速的在线预测,提出一种改进的在线核极限学习机方法(IO-KELM),以电池工作电压、电流和表面温度为输入量,电池SOC为输出量建立预测模型。IO-KELM采用Cholesky分解将核极限学习机(KELM)从离线模式扩展到在线模式,使网络输出权值随新样本的逐次加入递推求解更新,以简单的四则运算替代复杂的矩阵求逆,提高了网络的泛化能力和在线学习效率。仿真实验表明,相比于KELM及直接在线建模的KELM算法(DO-KELM),IO-KELM具有更高的预测精度、更强的鲁棒性及更快的计算速度。...
Gespeichert in:
Veröffentlicht in: | 系统仿真学报 2018-03, Vol.30 (3), p.969-975 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 为对蓄电池荷电状态(SOC)进行准确、快速的在线预测,提出一种改进的在线核极限学习机方法(IO-KELM),以电池工作电压、电流和表面温度为输入量,电池SOC为输出量建立预测模型。IO-KELM采用Cholesky分解将核极限学习机(KELM)从离线模式扩展到在线模式,使网络输出权值随新样本的逐次加入递推求解更新,以简单的四则运算替代复杂的矩阵求逆,提高了网络的泛化能力和在线学习效率。仿真实验表明,相比于KELM及直接在线建模的KELM算法(DO-KELM),IO-KELM具有更高的预测精度、更强的鲁棒性及更快的计算速度。 |
---|---|
ISSN: | 1004-731X |
DOI: | 10.16182/j.issn1004731x.joss.201803025 |